PENG Bo, CAO Ya-peng, HU Yu-feng etc. Polymer Bistable Devices Based on Poly(3-hexylthiophene)/Poly(methylmethacrylate) Bilayer Films[J]. Chinese Journal of Luminescence, 2016,37(9): 1090-1096
PENG Bo, CAO Ya-peng, HU Yu-feng etc. Polymer Bistable Devices Based on Poly(3-hexylthiophene)/Poly(methylmethacrylate) Bilayer Films[J]. Chinese Journal of Luminescence, 2016,37(9): 1090-1096 DOI: 10.3788/fgxb20163709.1090.
Polymer Bistable Devices Based on Poly(3-hexylthiophene)/Poly(methylmethacrylate) Bilayer Films
P3HT/PMMA bilayer device was fabricated through layer by layer spin-coating method and the device performance was greatly enhanced comparing with P3HT and PMMA single layer device. SEM image was taken to study the cross-section morphology of the bilayer film. The current-voltage (
I-V
) and current-repeatable times (
I-t
) measurements were taken to investigate the performance of the devices. The bilayer one has a better ON/OFF ratio about 110
3
and the device is quite stable. The fitting of
I-V
curves was utilized to analyze the charge transport process with the help of the diagram of the energy bands. The results show that the charge trapping-detrapping theory can be used to explain the operating mechanism of the bilayer device.
关键词
Keywords
references
MA L P, PYO S, OUYANG J Y, et al.. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system[J]. Appl. Phys. Lett., 2003, 82(9):1419.
SCOTT J C, BOZANO L D. Nonvolatile memory elements based on organic materials[J]. Adv. Mater., 2007, 19(11):1452-1463.
KO S H, YOO C H, KIM T W. Electrical bistabilities and memory stabilities of organic bistable devices utilizing C60 molecules embedded in a polymethyl methacylate matrix with an Al2O3 blocking layer[J]. J. Electrochem. Soc., 2012, 159(8):G93-G96.
LIU G, JIN Z W, ZHANG Z G, et al.. Realization of nonvolatile organic memory device without using semiconductor[J]. Appl. Phys. Lett., 2014, 104(2):023303.
LI J T, TANG A W, LI X, et al.. Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites[J]. Nanoscale Res. Lett., 2014, 9(1):128-1-5.
RAMANA C V V, MOODLEY M K, KUMAR A B V K, et al.. Charge carrier transport mechanism based on stable low voltage organic bistable memory device[J]. J. Nanosci. Nanotechnol., 2015, 15(5):3934-3938.
ICHIKAWA M, YAMAMURA K, JEON H G, et al.. Effects of volatile additives in solutions used to prepare polythiophene-based thin-film transistors[J]. J. Appl. Phys., 2011, 109(5):054504-1-6.
MEENA J S, CHU M C, WU C S, et al.. Highly reliable Si3N4-HfO2 stacked heterostructure to fully flexible poly-(3-hexylthiophene) thin-film transistor[J]. Org. Electron., 2011, 12(8):1414-1421.
BERNARDI M, GIULIANINI M, GROSSMAN J C. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells[J]. ACS Nano, 2010, 4(11):6599-6606.
KWON S, SHIM M, LEE J I, et al.. Ultrahigh density array of CdSe nanorods for CdSe/polymer hybrid solar cells:enhancement in short-circuit current density[J]. J. Mater. Chem., 2011, 21(33):12449-12453.
沙春芳. RR-P3HT和PCBM混合薄膜中的长寿命光激发态研究[J]. 光子学报, 2014, 43(5):0531003-1-6. SHA C F. Long lived photoexcitation in RR-P3HT and PCBM blended films[J]. Acta Photon. Sinica, 2014, 43(5):0531003-1-6. (in Chinese)
姜璐璐,刘海瑞,李梦菲,等. 胆甾液晶应用于P3HT:PCBM聚合物光伏器件研究[J]. 液晶与显示, 2015, 30(4):596-601. JIANG L L, LIU H R, LI M F, et al.. Application of cholesteric liquid crystal in P3HT:PCBM photovoltaic device[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4):596-601. (in Chinese)
PARK K K, JUNG J H, KIM T W. Memory effects and carrier transport mechanisms of write-once-read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate[J]. Appl. Phys. Lett., 2011, 98(19):193301-1-3.
QIU L Z, LIM J A, WANG X H, et al.. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors[J]. Adv. Mater., 2008, 20(6):1141-1145.
SONG W S, YANG H Y, YOO C H, et al.. Memory stabilities and mechanisms of organic bistable devices with a phase-separated poly(methylmethacrylate)/poly(3-hexylthiophene) hybrid layer[J]. Org. Electron., 2012, 13(11):2485-2488.
LAI Y C, WANG Y X, HUANG Y C, et al.. Rewritable, moldable, and flexible sticker-type organic memory on arbitrary substrates[J]. Adv. Funct. Mater., 2014, 24(10):1430-1438.
ZHANG L, YANG D, YANG S Y, et al.. Solution-processed P3HT-based photodetector with field-effect transistor configuration[J]. Appl. Phys. A, 2014, 116(3):1511-1516.
YANG Y, OUYANG J, MA L, et al.. Electrical switching and bistability in organic/polymeric thin films and memory devices[J]. Adv. Funct. Mater., 2006, 16(8):1001-1014.
WUNDERLICH W. Physical Constants of Poly(methyl methacrylate)[M]. London:John Wiley & Sons, Inc., 2003.
LAMPERT M A, MARK P. Current Injection in Solids[M]. New York:Academic Press, 1970.
KAO K C, HWANG W. Electrical Transport in Solids:with Particular Reference to Organic Semiconductors[M]. Oxford:Pergamon Press, 1981.
LIU C Y, HOLMAN Z C, KORTSHAGEN U R. Hybrid solar cells from P3HT and silicon nanocrystals[J]. Nano Lett., 2009, 9(1):449-452.
SON D I, YOU C H, KIM W T, et al.. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites[J]. Appl. Phys. Lett., 2009, 94(13):132103-1-3.
HAGEN J A, LI W, STECKL A J, et al.. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer[J]. Appl. Phys. Lett., 2006, 88(17):171109-1-3.
Role of Spinning Speed in Fabrication of Spin-coated P3HT-based OFETs
Performance and Dielectric Property of Single/Double Acceptor Based Planar Heterojuntion Organic Photovoltaic Cells with P3HT Donor
Organic Electrical Bistable Devices Based on Poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenyl vinylene]/poly(ethylene glycol) Films
Electrical Bistable Devices Based on Poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene]/Tris(2-phenylpyridine)iridium(Ⅲ)
Study of Ga-doping Effect on The Structure of Cubic MgZnO
Related Author
JIANG Jing
ZHENG Ling-cheng
WANG Qian
WU Feng
CHENG Xiao-man
ZHENG Yan-qiong
WEI Bin
WANG Chao
Related Institution
Institute of Material Physics, Tianjin University of Technology, Key Laboratory of Display Material and Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory of Photoelectric Materials and Device
School of Science, Tianjin University of Technology
Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University
School of Material Science and Engineering, Shanghai University
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University