JI Zi-ye, ZHANG Hai-ming, WU Lei, BAI Xiao-gang, HUANG Dan. Effects of Solvent on Luminescent Properties of GQDs[J]. 发光学报, 2016,37(9): 1031-1036 DOI: 10.3788/fgxb20163709.1031.
Effects of Solvent on Luminescent Properties of GQDs
The graphene quantum dots(GQDs) were prepared by pyrolyzing citric acid and dissolved with different organic solvents. The influence of solvent on luminescence properties is investigated. Transmission electron microscope(TEM)
along with atomic force microscope(AFM) was employed for the morphology and structure analysis of the as-prepared samples. The results show that GQDs' diameters are distributed in the range of 2-12 nm(4.9 nm average diameter). Optical properties of the as-prepared samples were characterized by ultraviolet-visible spectra(UV-Vis) and fluorescence spectrophotometer. The photoluminescence spectra depict that the GQDs exhibited solvent-dependent behaviors. The position of the peak fluorescence of GQDs in polar solvent ethanol
acetone and ethylene glycol is dependent on excitation wavelength
emission wavelength is in a visible light area. The fluorescence of GQDs in a nonpolar solvent pentane is independent of excitation wavelength
the strong emission appeared in the near-UV region.
关键词
Keywords
references
NOVOSELOV K S, GEIM A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
GEIM A K, Novoselov K S. The rise of graphene[J]. Nat. Mater., 2007, 6(3):183-191.
NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al.. A roadmap for graphene[J]. Nature, 2012, 490(7419):192-200.
PATON K R, VARRLA E, BACKES C, et al.. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nat. Mater., 2014, 13(6):624-630.
PONOMARENKO L A, SCHEDION F, KATSNELSON M I, et al.. Chaotic Dirac billiard in graphene quantum dots[J]. Science, 2008, 320(5874):356-358.
SHEN J H, ZHU Y H, YANG X L, et al.. Graphene quantum dots:emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem. Commun., 2012, 48(31):3686-3699.
ZHANG Z P, ZHANG J, CHEN N, et al.. Graphene quantum dots:an emerging material for energy-related applications and beyond[J]. Energy Environ. Sci., 2012, 5(10):8869-8890.
ZHANG M, BAI L L, SHANG W H, et al.. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. J. Mater. Chem., 2012, 22(15):7461-7467.
吴春霞,宋泽琳. 一步水热法合成的石墨烯量子点及其在锰离子探测中的应用[J]. 发光学报, 2015, 36(4):413-418. WU C X, SONG Z L. One-step hydrothermal synthesis of graphene quantum dots and the application for Mn2+ detection[J]. Chin. J. Lumin., 2015, 36(4):413-418. (in Chinese)
ZHU S J, SONG Y B, ZHAO X H, et al.. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots):current state and future perspective[J]. Nano. Res., 2015, 8(2):355-381.
OZFIDAN I, GUCLU AD, KORKUSINSKI M, et al.. Theory of optical properties of graphene quantum dots[J]. Phys. Status Solidi-Rapid Res. Lett., 2016, 10(1):102-110.
DONG Y, CHEN C, ZHENG X, et al.. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. J. Mater. Chem., 2012, 22(18):8764-8766.
LIU R, WU D, FENG X, et al.. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology[J]. J. Am. Chem. Soc., 2011, 133(39):15221-15223.
PAN D Y, GUO L, ZHANG J C, et al.. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. J. Mater. Chem., 2012, 22(8):3314-3318.
CHEN S, LIU J W, CHEN M L, et al.. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation[J]. Chem. Commun., 2012, 48(61):7637-7639.
ZHU S, ZHANG J, QIAO C, et al.. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chem. Commun., 2011, 47(24):6858-6860.
ZHU S J, ZHANG J H, TANG S J, et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:from fluorescence mechanism to up-conversion bioimaging applications[J]. Adv. Funct. Mater., 2012, 22(22):4732-4740.
FAN L S, HU Y W, WANG X, et al.. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT[J]. Talanta, 2012, 101:192-197.
LI L L, WU G H, YANG G H, et al.. Focusing on luminescent graphene quantum dots:current status and future perspectives[J]. Nanoscale, 2013, 5(10):4015-4039.
CUSHING S K, Li M, HUANG F Q, et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano, 2014, 8(1):1002-1013.
LAKOWICZ J. R. Principles of Fluorescence Spectroscopy[M]. New York:Biswas Hope press, 2006.
KHARA D C, SAMANTA A. Solvation dynamics and red-edge effect of two electrically charged solutes in an imidazolium ionic liquid[J]. Indian J. Chem., 2010, 49:714-720.
CAO L, MEZIANI M J, SAHU S, et al.. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts Chem. Res., 2013, 46(1):171-180.
LI Y, HU Y, ZHAO Y, et al.. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011, 23(6):776-780.
PAN D Y, ZHANG J C, LI Z, et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv. Mater., 2010, 22(6):734-738.
EDA G, LIN Y Y, MATTEVI C, et al.. Blue photoluminescence from chemically derived graphene oxide[J]. Adv. Mater., 2010, 22(4):505-509.
SHEN J, ZHU Y, YANG X, et al.. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[J]. New. J. Chem., 2012, 36(1):97-101.
ZHOU X J, ZHANG Y, WANG C, et al.. Photo-fenton reaction of graphene oxide:a new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8):6592-6599.