HUANG Hua-mao, HUANG Jiang-zhu, HU Xiao-long etc. Effects of The Height of Nanorod Structure on The Photoluminescence Spectra of GaN-based Green LED[J]. Chinese Journal of Luminescence, 2016,37(8): 967-972
HUANG Hua-mao, HUANG Jiang-zhu, HU Xiao-long etc. Effects of The Height of Nanorod Structure on The Photoluminescence Spectra of GaN-based Green LED[J]. Chinese Journal of Luminescence, 2016,37(8): 967-972 DOI: 10.3788/fgxb20163708.0967.
Effects of The Height of Nanorod Structure on The Photoluminescence Spectra of GaN-based Green LED
Nanorod structure is an effective method to release the strain in multiple quantum wells of InGaN/GaN green LED with high In component. In this paper
the natural lithography with self-assembled polystyrene microspheres
inductively coupled plasma dry etching and wet-etching using KOH aqueous solution were used to fabricate the nanorod structure with three heights in GaN-based green LED epitaxial wafers. The morphology was observed by scanning electron microscope
and the photoluminescence (PL) spectra at room temperature and 10 K low temperature were characterized. It is shown that the strain relaxation significantly affect the piezoelectric field
thereby the nanorod structure leads to a promotion of the wafers' internal quantum efficiency (IQE) and blue-shift of the peak wavelengths of PL spectra
and the nonuniform distribution of the strain causes a broadening of the FWHM (full width at half maximum). Compared with the ordinary planar structure
the nanorod structure with the height of 747 nm induces an enhancement of 917% for the IQE
a blue-shift of 18 nm for the peak wavelengths of PL spectrum
and a broadening of 7 nm for the FWHM. The results also indicate that the decreasing of effective active area of samples with nanorod structure may reduce the FWHM.
关键词
Keywords
references
LI S F, WAAG A. GaN based nanorods for solid state lighting[J]. J. Appl. Phys., 2012, 111(7):071101-1-23.
JU J W, BAEK J H, LEE S J, et al.. Fabrication and characterization of high efficiency green nanopillar LED[J]. J. Cryst. Growth., 2013, 370:332-335.
KE M Y, WANG C Y, CHEN L Y, et al.. Application of nanosphere lithography to LED surface texturing and to the fabrication of nanorod LED arrays[J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(4):1242-1249.
CHOI H W, DAWSON M D. Improved current spreading in 370 nm AlGaN microring light emitting diodes[J]. Appl. Phys. Lett., 2005, 86(5):053504-1-3.
BAI J, WANG Q, WANG T. Characterization of InGaN-based nanorod light emitting diodes with different indium compositions[J]. J. Appl. Phys., 2012, 111(11):113103-1-7.
YANG G F, XIE F, TONG Y Y, et al.. Formation of nanorod InGaN/GaN multiple quantum wells using nickel nano-masks and dry etching for InGaN-based light-emitting diodes[J]. Mater. Sci. Semicond. Proc., 2015, 30:694-706.
LI Q M, WESTLAKE K R, CRAWFORD M H, et al.. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays[J]. Opt. Express, 2011, 19(25):25528-25534.
KIM S H, PARK H H, SONG Y H, et al.. An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes[J]. Opt. Express, 2013, 21(6):7125-7130.
CHUNG WW, YOO G Y, PARK H K, et al.. Fabrication of an InGaN/GaN-based LED nanorod array by nanosphere lithography and its optical properties[C]. Proceedings of The 15th IEEE International Conference on Nanotechnology, Rome, Italy, 2015:216-219.
CHEUNG C L, NIKOLIC? R J, REINHARDT C E, et al.. Fabrication of nanopillars by nanosphere lithography[J]. Nanotechnology, 2006, 17(5):1339-1343.
YU Z G, CHEN P, YANG G F, et al.. Influence of dry etching damage on the internal quantum efficiency of nanorod InGaN/GaN multiple quantum wells[J]. Chin. Phys. Lett., 2012, 29(7):078501-1-4.
杨华,谢自力,戴姜平,等. GaN纳米柱发光特性[J].发光学报, 2015, 36(3):279-282. YANG H, XIE Z L, DAI J P, et al.. Luminescence property of GaN nanorod[J]. Chin. J. Lumin., 2015, 36(3):279-282. (in Chinese)
DOAN M H, LEE J. Enhanced cathodoluminescence of KOH-treated InGaN/GaN LEDs with deep nano-hole arrays[J]. J. Opt. Soc. Korea, 2014, 18(3):283-287.
ZHU J H, WANG L J, ZHANG S M, et al.. The fabrication of GaN-based nanopillar light-emitting diodes[J]. J. Appl. Phys., 2010, 108(7):074302-1-4.
刘晓苗.基于聚苯乙烯微球的胶体晶体的制备及应用的研究[D].武汉:湖北大学, 2013. LIU X M. Fabrication of Colloidal Crystals by Using Polystyrenemicrospheres and Their Application[D]. Wuhan:Hubei University, 2013. (in Chinese)
赵玲慧,张连,王晓东,等.基于InGaN/GaN多量子阱双波长发光二极管生长及发光性能[J].光子学报, 2013, 42(10):1135-1139. ZHAO L H, ZHANG L, WANG X D, et al.. Growth and optical properties of InGaN/GaN dual-wavelength light-emitting diodes[J]. Acta Photon. Sin., 2013, 42(10):1135-1139. (in Chinese)
ZHU J H, WANG L J, ZHANG S M, et al.. Light extraction efficiency improvement and strain relaxation in InGaN/GaN multiple quantum well nanopillars[J]. J. Appl. Phys., 2011, 109(8):084339-1-5.
HSUEH T H, HUANG H W, KAO C C, et al.. Characterization of InGaN/GaN multiple quantum well nanorods fabricated by plasma etching with self-assembled nickel metal nanomasks[J]. Jpn. J. Appl. Phys., 2005, 44(4S):2661-2663.
SEO H W, BAE S Y, PARK J H, et al.. Strained gallium nitride nanowires[J]. J. Chem. Phys., 2002, 116(21):9492-9499.
YU P C, CHIU C H, WU Y R, et al.. Strain relaxation induced micro photoluminescence characteristics of a single InGaN-based nanopillar fabricated by focused ion beam milling[J]. Appl. Phys. Lett., 2008, 93(8):081110-1-3.
WENG G E, ZHAO W R, CHEN S Q, et al.. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green[J]. Nanoscale Res. Lett., 2015, 10(1):31-1-7.