YOU Xue-meng, ZHANG Xin-wen, CHEN Yue-hua etc. High Efficiency Green Phosphorescent Organic Light Emitting Diodes Using An Ultrathin Nondoped Emitting Layer[J]. Chinese Journal of Luminescence, 2016,37(8): 961-966
YOU Xue-meng, ZHANG Xin-wen, CHEN Yue-hua etc. High Efficiency Green Phosphorescent Organic Light Emitting Diodes Using An Ultrathin Nondoped Emitting Layer[J]. Chinese Journal of Luminescence, 2016,37(8): 961-966 DOI: 10.3788/fgxb20163708.0961.
High Efficiency Green Phosphorescent Organic Light Emitting Diodes Using An Ultrathin Nondoped Emitting Layer
The nondoped emitting layer (EML) was constructed by introducing a ultrathin layer of pure green phosphorescent dye tris(2-phenylpyridine)iridium between a hole transporting layer TCTA and an electron transporting layer TPBi. The device structure is ITO/MoO
3
(2 nm)/NPB(40 nm)/TCTA(10 nm)/Ir(ppy)
3
(0.1-0.5 nm)/TPBi(40 nm)/LiF(1 nm)/Al(80 nm). The thickness of EML can affect the performance of green phosphorescent organic light emitting diodes (PhOLEDs). By changing the thickness of emitting layers
the best performance of green PhOLEDs can be achieved with a 0.2 nm pure phosphorescent dye. The device exhibits highly efficient green emission with a maximum luminance of 26 350 cdm
-2
a maximum current efficiency of 42.9 cdA
-1
and a maximum external quantum efficiency of 12.9%. These results indicate that the high performance PhOLEDs can be realized with only ultrathin nondoped EMLs in a simple way.
关键词
Keywords
references
胡俊涛,程群,余承东,等. Bphen掺杂Cs2CO3作为电子传输层对OLED器件性能的影响[J].液晶与显示,2015, 30(6):943-948. HU J T, CHENG Q, YU C D, et al.. Impact of Bphen doping Cs2CO3 as electron transport layer on the performance of OLEDs[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(6):943-948. (in Chinese)
武明珠,郭闰达,张振松,等.面向彩色有机微显示的有机白光顶发射器件[J].液晶与显示, 2015, 30(5):790-795. WU M Z, GUO R D, ZHANG Z S, et al.. Top emitting white organic light emitting diodes towards full color organic microdisplay[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(5):790-795. (in Chinese)
ZHANG X W, HU Q, LIN J Y, et al.. Efficient and stable deep blue polymer light-emitting devices based on -phase poly(9,9-dioctylfluorene)[J]. Appl. Phys. Lett., 2013, 103(15):153301-1-5.
ZHANG X W, GUO X, CHEN Y H, et al.. Highly efficient red phosphorescent organic light-emitting devices based on solution-processed small molecular mixed-host[J]. J. Lumin., 2015, 161:300-305.
ZHANG X W, YANG T, WEI Q, et al.. Arylfluorene based universal hosts for solution-processed RGB and white phosphorescent organic light-emitting devices[J]. RSC Adv., 2015, 5(14):94077-94083.
ZHAO Y B, CHEN J S, MA D G. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes[J]. ACS Appl. Mater. Interf., 2013, 5(3):965-971.
XUE K W, SHENG R, DUAN Y, et al.. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers[J]. Org. Electron., 2015, 26:451-457.
CHEN S M, ZHAO Z J, TANG B Z, et al.. Non-doped white organic light-emitting diodes based on aggregation-induced emission[J].J. Phys. D-Appl. Phys., 2010, 43(9):095101-1-5.
LIU S M, LI B, ZHANG L M, et al.. Enhanced efficiency and reduced roll-off in nondoped phosphorescent organic light-emitting devices with triplet multiple quantum well structures[J]. Appl. Phys. Lett., 2010, 97(8):083304-1-3.
ZHAO Y B, ZHU L P, CHEN J S, et al.. Improving color stability of blue/orange complementary white OLEDs by using single-host double-emissive layer structure:comprehensive experimental investigation into the device working mechanism[J]. Org. Electron., 2012, 13(8):1340-1348.
JANG J G, SHIN H K. High efficiency green phosphorescent organic light emitting device with (TCTA/TCTA0.5TPBi0.5/TPBi):Ir(ppy)3 emission layer[J]. Thin Solid Films, 2009, 517(14):4122-4126.
LAW C W, LAU K M, FUNG M K, et al.. Effective organic-based connection unit for stacked organic light-emitting devices[J]. Appl. Phys. Lett., 2006, 89(13):133511-1-3.
XIAO L X, CHEN Z J, QU B, et al.. Recent progresses on materials for electrophosphorescent organic light-emitting devices[J]. Adv. Mater., 2011, 23(8):926-952.
HUNG W Y, KE T H, LIN Y T, et al.. Employing ambipolar oligofluorene as the charge-generation layer in time-of-flight mobility measurements of organic thin films[J]. Appl. Phys. Lett., 2006, 88(6):064102-1-3.
YANG X X, DU X Y, TAO S L, et al.. Efficient hole-transporter for phosphorescent organic light emitting diodes with a simple molecular structure[J]. Org. Electron., 2015, 26:481-486.
Luminescence and Applications of Single Quantum Dots
Excitons and Their Efficient Utilization in OLEDs
Pressure-induced K-Λ Crossover of Excitons Emissions in Monolayer WSe2 and MoSe2
Numerical Study of Heat Dissipation Model for Organic Light-emitting Diodes
A Novel Spectrum Expanding Phenomenon Based on Inserting LiF Layer in Emitting Layer in OLEDs
Related Author
XU Xiulai
SHI Shushu
YANG Jingnan
CHEN Xiqing
LI Hancong
MA Dongge
FU Xi-hong
LI Fang-fei
Related Institution
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University
Beijing Academy of Quantum Information Sciences
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences
Center for Aggregation-induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences