JIN Hui, MA Hong-tao, LIU Peng. Effect of Doped-shell on The Luminescent Enhancement of NaYF<sub>4</sub>:Ce<sup>3+</sup>,Tb<sup>3+</sup> System[J]. Chinese Journal of Luminescence, 2016,37(8): 955-960
JIN Hui, MA Hong-tao, LIU Peng. Effect of Doped-shell on The Luminescent Enhancement of NaYF<sub>4</sub>:Ce<sup>3+</sup>,Tb<sup>3+</sup> System[J]. Chinese Journal of Luminescence, 2016,37(8): 955-960 DOI: 10.3788/fgxb20163708.0955.
Effect of Doped-shell on The Luminescent Enhancement of NaYF4:Ce3+,Tb3+ System
core/active-shell was prepared. The complete processes of excitation
energy migration
from photon absorption to emission were dissected to unravel the role of sensitizers doped in shell in every individual stage. The experiment results reveal that the essence of doping sensitizers in the shell is just to increase the absorption efficiency whereas the quantum yield is lessened simultaneously. The optimal sensitizer doping concentration is also fixed to achieve the best luminescence performance. In order to obtain the best enhanced luminescence effect
the doping concentration of the sensitized ions in the shell must be lower than that of the bare core.
关键词
Keywords
references
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev.,2004, 104(1):139-174.
DUAN C K, TANNER P A, BABIN V, et al.. Theoretical simulation and synchrotron excitation spectra of lanthanide ions in hexafluoroelpasolite lattices[J]. J. Phys. Chem. C,2009, 113:12580-12585.
DOWNING E, HESSELINK L, RALSTON J, et al.. Macfarlane, a three-color, solid-state, three-dimensional display[J].Science,1996, 273:1185-1189.
ZHANG F, WAN Y, YING T, et al.. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angew. Chem. Int. Ed., 2007, 46:7976-7979.
WANG F, HAN Y, LIM C S, et al.. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463:1061-1065.
LI Y P, ZHANG J H, ZHANG X, et al.. Spectral probing of surface luminescence of cubic Lu2O3:Eu3+nanocrystals synthesized by hydrothermal approach[J]. J. Phys. Chem. C, 2009, 113(41):17705-17710.
VAN RIJKE F D, ZIJLMANS H, LI S, et al.. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nat. Biotechnol., 2001, 19(3):273-276.
ZHANG F, SHI Q H, ZHANG Y C, et al.. Multiplexed biological detection:fluorescence upconversion microbarcodes for multiplexed biological detection:nucleic acid encoding[J]. Adv. Mater., 2011, 23(33):3775-3781.
姜永章,夏海平,张加忠,等.单晶体-NaYF4:Dy3+的制备及光谱特性[J].光子学报, 2015, 44(8):0816001. JIANG Y Z, XIA H P, ZHANG J Z, et al.. Growth and optical spectra of Dy3+ doped -NaYF4 single crystal[J]. Acta Photon. Sinica, 2015, 44(8):0816001. (in Chinese)
付作岭,董晓睿,盛天琦,等.纳米晶体中稀土离子的发光性质及其变化机理研究[J].中国光学, 2015, 8(1):139-144. FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J]. Chin. Opt., 2015, 8(1):139-144. (in Chinese)
WANG C, CHENG L, LIU Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy[J]. Biomaterials, 2013, 32(4):1110-1120.
LIU X M, ZHENG M, KONG X G, et al.. Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells[J]. Chem. Commun., 2013, 49:3224-3226.
LIU X M, QUE I, KONG X G, et al.. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform[J]. Nanoscale, 2015, 7:14914-14923.
BOYER J C, VEGGEL F C J M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+upconverting nanoparticles[J]. Nanoscale, 2010, 2:1417-1419.
WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J]. Angew. Chem. Int. Ed., 2010, 49:7456-7460.
LIU X M, KONG X G, ZHANG Y L, et al.. Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications[J]. Chem. Commun., 2011, 47(43):11957-11959.
VETRONE F, NACCACHE R, MAHALINGAM V, et al.. The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv. Funct. Mater., 2009, 19:2924-2929.
YANG D M, LI C X, LI G G, et al.. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification[J]. J. Mater. Chem., 2011, 21:5923-5927.
WANG F, ZHANG Y, FAN X P, et al.. Facile synthesis of water-soluble LaF3:Ln3+ nanocrystals[J]. J. Mater. Chem., 2006, 16:1031-1034.
MELHUISH W H. Quantum efficiencies of fluorescence of organic substances:effect of solvent and concentration of the fluorescent solute[J]. J. Phys. Chem., 1961, 65:229-235.
Perspectives for Researchers in Inorganic Luminescent Nanomaterials:How to Move Out of Current Comfort Zones?
Synthesize and Luminescence Properties of Na2CaSiO4∶RE3+(RE=Ce3+,Tb3+,Eu3+)
Effect of A Series of Host Material on Optoelectronic Performance of Red Phosphorescent OLED
Effects of Synthesizing Temperature on the Field Emission Properties of Nano-Zinc Oxide
Effect of p-doping Density and Al Composition upon Luminescent Efficiency
Related Author
Wei ZHENG
Da-tao TU
Xue-yuan CHEN
WANG Yu-hua
SHI Yu-rong
DING Xin
WU Yin
ZHAO Yu-liang
Related Institution
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
School of Physical Science and Technology, Lanzhou University
Xian Ruilian Modern Electronic Chemicals Co.Ltd.
School of Electronic Science and Engineering, Southeast University