TAN Man-lin, SHANG Xu-ran, WANG Xiao-wei etc. Doping Modification of YVO<sub>4</sub>:Eu<sup>3+</sup> Down-conversion Materials for Solar Cell Applications[J]. Chinese Journal of Luminescence, 2016,37(8): 912-918
TAN Man-lin, SHANG Xu-ran, WANG Xiao-wei etc. Doping Modification of YVO<sub>4</sub>:Eu<sup>3+</sup> Down-conversion Materials for Solar Cell Applications[J]. Chinese Journal of Luminescence, 2016,37(8): 912-918 DOI: 10.3788/fgxb20163708.0912.
Doping Modification of YVO4:Eu3+ Down-conversion Materials for Solar Cell Applications
down-conversion materials were prepared by modified sol-gel method to broaden the absorption range of ultraviolet light and enhance the stability of light emission. It is shown that some positions of Yttrium (Y
3+
) and Vanadium (V
5+
) ions can be successfully replaced by incorporated Bismuth (Bi
3+
) and phosphorus (P
3+
) ions in the YVO
4
lattice. As to low Bi
3+
doping
the crystal structure is still tetragonal and the position of Y
3+
is well substituted by Bi
3+
. While for low P
3+
doping
a homogeneous solid solution is formed between YVO
4
and YPO
4
.Under the excitation of 325 nm
the highest luminescence intensity can be obtained with Bi
3+
mole fraction of 0.04 and P
5+
mole fraction of 0.10
respectively. In that case
the instensity of YV
0.90
P
0.10
O
4
:0.05Eu
3+
can increase up to 1.9 times comparing to YVO
4
:0.05Eu
3+
.
关键词
Keywords
references
GREEN M A, EMERY K, HISHIKAWA Y, et al.. Solar cell efficiency tables (Version 45)[J]. Prog. Photovolt. Res. Appl., 2015, 23(1):1-9.
CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J. Appl. Phys., 1954, 25(5):676-677.
VAN DERZWAAN B, RABL A. Prospects for PV:a learning curve analysis[J]. Solar Energy, 2003, 74(1):19-31.
CONIBEER G. Third-generation photovoltaics[J]. Mater. Today, 2007, 10(11):42-50.
GREEN M A. Photovoltaic principles[J]. Phys. E, 2002, 14(1-2):11-17.
STRVMPEL C, MCCANN M, BEAUCARNE G, et al.. Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials[J]. Solar Energy Mater. Solar Cells, 2007, 91(4):238-249.
RICHARDS B S. Luminescent layers for enhanced silicon solar cell performance:down-conversion[J]. Solar Energy Mater. Solar Cells, 2006, 90(9):1189-1207.
RICHARDS B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers[J]. Solar Energy Mater. Solar Cells, 2006, 90(15):2329-2337.
LE DONNE A, DILDA M, CRIPPA M, et al.. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency[J]. Opt. Mater., 2011, 33(7):1012-1014.
HUANG C K, CHEN Y C, HUNG W B,et al.. Enhanced light harvesting of Si solar cellsvia luminescent down-shifting using YVO4:Bi3+,Eu3+ nanophosphors[J]. Prog. Photovolt. Res. Appl., 2013, 21(7):1507-1513.
PALILLA F C, LEVINE A K, RINKEVICS M. Rare earth activated phosphors based on yttrium orthovanadate and related compounds[J]. J. Electrochem. Soc., 1965, 112(8):776-779.
RIWOTZKI K, HAASE M. Wet-chemical synthesis of doped colloidal nanoparticles:YVO4:Ln (Ln=Eu, Sm, Dy)[J]. J. Phys. Chem. B, 1998, 102(50):10129-10135.
吴珂,王乐,徐国堂,等. YVO4:Eu3+@YPO4纳米核壳结构荧光粉的水热合成及表征[J].无机材料学报,2012, 27(7):706-710. WU K, WANG L, XU G T, et al.. Hydrothermal method synthesis and characterization of YVO4:Eu3+@YPO4 core-shell phosphor[J]. J. Inorg. Mater., 2012, 27(7):706-710. (in Chinese)
DONG Q Z, WANG Y H, PENG L L, et al.. Controllable morphology and high photoluminescence of (Y, Gd)(V, P) O4:Eu3+ nanophosphors synthesized by two-step reactions[J]. Nanotechnology, 2011, 22(21):215604-1-8.
KANG J H, IM W B, LEE D C,et al.. Correlation of photoluminescence of (Y, Ln)VO4:Eu3+(Ln=Gd and La) phosphors with their crystal structures[J]. Solid State Commun., 2005, 133(10):651-656.
HUIGNARD A, BUISSETTE V, FRANVILLE A C, et al.. Emission processes in YVO4:Eu nanoparticles[J]. J. Phys. Chem. B, 2003, 107(28):6754-6759.
韩荣江,高丹,陈克正.沉淀法制备形貌可控YVO4:Eu3+,Bi3+粉体及其发光性能[J].青岛科技大学学报(自然科学版), 2012, 33(3):221-224. HAN R J, GAO D, CHEN K Z. Morphology-controlled precipitation synthesis and luminescent properties of YVO4:Eu3+, Bi3+ powder[J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2012, 33(3):221-224. (in Chinese)
BLASSE G. On the Eu3+ fluorescence of mixed metal oxides. Ⅳ. The photoluminescent efficiency of Eu3+-activated oxides[J]. J. Chem. Phys., 1966, 45(7):2356-2360.
RIWOTZKI K, HAASE M.Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles:luminescence and energy transfer processes[J]. J. Phys. Chem. B, 2001, 105(51):12709-12713.
张思远.稀土离子的光谱学:光谱性质和光谱理论[M].北京:科学出版社, 2008:33-42, 138-141. ZHANG S Y. Spectroscopy of Rare Earth Ions:Spectra Properties and Spectra Theory [M]. Beijing:Science Press, 2008:33-42, 138-141. (in Chinese)
马柳莺,谢佑卿.规则固溶体-c曲线的标准方程[J].中南矿治学院学报,1986, 17(6):39-46. MA L Y, XIE Y Q. A normative equation of -c curve for the regular solid solutions[J]. J. CSIMM, 1986, 17(6):39-46. (in Chinese)
MEZAO, VILLABONA-LEAL E G, DIAZ-TORRES L A, et al.. Luminescence concentration quenching mechanism in Gd2O3:Eu3+[J]. J. Phys. Chem. A, 2014, 118(8):1390-1396.