ZENG Yi-shuai, YANG You-liang, MA Cui-hong. Design of The Detection System of Multi Component Gas Composition in Dust Environment[J]. Chinese Journal of Luminescence, 2016,37(7): 859-865
ZENG Yi-shuai, YANG You-liang, MA Cui-hong. Design of The Detection System of Multi Component Gas Composition in Dust Environment[J]. Chinese Journal of Luminescence, 2016,37(7): 859-865 DOI: 10.3788/fgxb20163707.0859.
Design of The Detection System of Multi Component Gas Composition in Dust Environment
A virtual system based on TDLAS to detect the concentration of dust containing gases was designed by LabVIEW. The concentration of SO
2
NO
2
and NO is measured at ambient temperature and pressure and environment of known dust particles
and the gas composition measuring results are not affected by dust. Three kinds of infrared laser of 2516.2
2911.66
and 3752.44 cm
-1
are used to detect SO
2
NO
2
and NO. According to the principle of phase locked loop
the two harmonic signals detected by multi channel lock-in amplifier are analyzed
and the concentration of each gas is measured using the second-harmonic signal calibration. Finally
the interference of dust particles is eliminated through data correction
so as to get stable results.
关键词
Keywords
references
REID J, GARSIDE B K, Shewchun J, et al.. High sensitivity point monitoring of atmospheric gases employing tunable diode lasers[J]. Appl. Opt., 1978, 17(11):1806-1810.
REID J, LABRIE D. Second-harmonic detection with tunable diode lasers-comparison of experiment and theory[J]. Appl. Phys. B, 1981, 26(3):203-210.
孙远涛,张洪田. 基于紫外吸收光谱技术的混合气体SO2和H2S浓度的实时监测[J]. 发光学报, 2015, 36(3):366-369. SUN Y T, ZHANG H T. Real-time monitoring for the concentrations of SO2 and H2S mixed gas by ultraviolet absorption spectroscopy detection technique[J]. Chin. J. Lumin., 2015, 36(3):366-369. (in Chinese)
贾良权,刘文清,阚瑞峰,等. 采用TDLAS的超音速气流中氧气质量流量检测法[J]. 光子学报, 2015, 44(7):0730001-1-6. JIA L Q, LIU W Q, KAN R F, et al.. Oxygen mass flow detection method in supersonic flow based on TDLAS[J]. Acta Photon. Sinica, 2015, 44(7):0730001-1-6. (in Chinese)
高彦伟,张玉钧,陈东,等. 可调谐二极管激光吸收光谱氟化氢检测[J]. 光子学报, 2015, 44(6):0630003-1-6. GAO Y W, ZHANG Y J, CHEN D, et al.. Laser absorption spectroscopy for detection of hydrogen fluoride using tunable diode laser[J]. Acta Photon. Sinica, 2015, 44(6):0630003-1-6. (in Chinese)
张志荣,余嵘华,张帅,等. 基于LabVIEW的氧气浓度实时在线监测系统软件设计[J]. 大气与环境光学学报, 2008, 3(6):454-460. ZHANG Z R, YU R H, ZHANG S, et al.. Software design based on LabVIEW for online monitoring oxygen concentration system[J]. J. Atmos. Environ. Opt., 2008, 3(6):454-460. (in Chinese)
张可可. 光谱吸收式光纤气体检测理论及技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012. ZHANG K K. Research on The Spectrum Absorptive Optical Gas Detection Theory and Technology[D]. Harbin:Harbin Engineering University, 2012. (in Chinese)
高楠. 调谐二极管激光吸收光谱中的若干关键技术研究[D]. 天津:天津大学, 2011. GAO N. Study on Several Key Techniques of Tunable Diode Laser Absorption Spectroscopy[D]. Tianjin:Tianjin University, 2011. (in Chinese)
刘小虎. 粉尘浓度测量技术研究[D]. 西安:西安工业大学, 2013. LIU X H. Study on Powder Concentration Measurement Technology[D]. Xi'an:Xi'an Technological University, 2013. (in Chinese)
赵占龙. 透射式光学粉尘浓度监测技术研究及应用[D]. 保定:河北大学, 2004. ZHAO Z L. The Study and Application of Transmission-model Optical Monitoring Technology of Dust Density[D]. Bao-ding:Hebei University, 2004. (in Chinese)
胡倩. 基于激光差分探测的粉尘浓度检测技术研究[D]. 西安:西安工业大学, 2014. HU Q. The Research for Particle Concentration Measurement Technology Based on Laser Difference Detection[D]. Xi'an:Xi'an Technological University, 2014. (in Chinese)
李晗,刘建国,何亚柏,等. 可调谐二极管激光吸收光谱二次谐波信号的模拟与分析[J]. 光谱学与光谱分析, 2013, 33(4):881-885. LI H, LIU J G, He Y B, et al.. Simulation and analysis of second-harmonic signal based on tunable diode laser absorption spectroscopy[J]. Spectrosc. Spect. Anal., 2013, 33(4):881-885. (in Chinese)
涂兴华,刘文清,张玉钧,等. CO2和CO的1.58m波段可调谐二极管激光吸收光谱的二次谐波检测研究[J]. 光谱学与光谱分析, 2006, 26(7):1190-1194. TU X H, LIU W Q, ZHANG Y J, et al.. Second harmonic detection with tunable diode laser absorption spectroscopy of CO and CO2 at 1.58m[J]. Spectrosc. Spect. Anal., 2006, 26(7):1190-1194. (in Chinese)
翟冰,何启欣,黄渐强,等. 红外气体检测中谐波信号正交锁相放大器设计与实现[J]. 光子学报, 2014, 43(11):1125001-1-6. ZHAI B, HE Q X, HUANG J Q, et al.. Design and realization of harmonic signal orthogonal lock-in amplifier used in infrared gas detection[J]. Acta Photon. Sinica, 2014, 43(11):1125001-1-6. (in Chinese)
宋楠,隋越,董明,等. 基于虚拟锁相放大器的中红外CO检测系统[J]. 光电子激光, 2014, 25(12):2343-2349. SONG N, SUI Y, DONG M, et al.. A mid infrared carbon oxide detection system based on virtual lock-in amplifier technology[J]. J. Optoelect. Laser, 2014, 25(12):2343-2349. (in Chinese)
王飞,黄群星,李宁,等. 利用可调谐半导体激光光谱技术对含尘气体中NH3的测量[J]. 物理学报, 2007, 56(7):3867-3872. WANG F, HUANG Q X, LI N, et al.. The tunable diode laser absorption spectroscoty for measurement of NH3 with particles[J]. Acta Phys. Sinica, 2007, 56(7):3867-3872. (in Chinese)
张志荣,孙鹏帅,夏滑,等. 可调谐半导体激光吸收光谱技术的调制参量影响及优化选择[J]. 光子学报, 2015, 44(1):0114002-1-10. ZHANG Z R, SUN P S, XIA H, et al.. Modulation parameters influence and optimal selection of tunable diode laser absorption spectroscopy[J]. Acta Photon. Sinica, 2015, 44(1):0114002-1-10. (in Chinese)
曹天书. TDLAS气体检测中二次谐波的锁相放大器的研究[D]. 长春:吉林大学, 2013. CAO T S. Lock-in Amplifier of Second Harmonic in The TDLAS Gas Detection[D]. Changchun:Jilin University, 2013. (in Chinese)
孙长海,金志明,李维江,等. 基于LabVIEW的低通数字滤波器设计[J]. 计算机技术及其应用, 2014, 36(5):27-29. SUN C H, JIN Z M, LI W J, et al.. Design of a low-pass digital filter based on LabVIEW[J]. Comput. Technol. Appl., 2014, 36(5):27-29. (in Chinese)
Spectral Parameter Computation of Yb∶GdScO3 Crystal
Luminescence Properties and Judd-Ofelt Analysis of BaGd2ZnO5:Sm3+ Microcrystalline Powders
Spectral Parameter Calculation of Ho3+, Tm3+ Co-doped KYb(WO4)2 Laser Crystal
Quantitative Investigation of α/β HMX Based on Terahertz Time Domain Spectroscopy System
Real-time Monitoring for The Concentrations of SO2 and H2S Mixed Gas by Ultraviolet Absorption Spectroscopy Detection Technique
Related Author
SUN Yu
LUO Jian-qiao
LIU Wen-peng
ZHANG De-ming
DING Shou-jun
DOU Ren-qin
WANG Xiao-fei
GAO Jin-yun
Related Institution
School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan
University of Science and Technology of China
Advanced Laser Technology Laboratory of Anhui Province
The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences