HU Shou-zhong, HOU Shang-lin, LIU Yan-jun etc. Propagation Characteristics of Terahertz Wave Double-cladding Photonic Crystal Fiber[J]. Chinese Journal of Luminescence, 2016,37(7): 845-851
HU Shou-zhong, HOU Shang-lin, LIU Yan-jun etc. Propagation Characteristics of Terahertz Wave Double-cladding Photonic Crystal Fiber[J]. Chinese Journal of Luminescence, 2016,37(7): 845-851 DOI: 10.3788/fgxb20163707.0845.
Propagation Characteristics of Terahertz Wave Double-cladding Photonic Crystal Fiber
In order to realize long distance and broadband transmission of terahertz wave
a double-cladding terahertz photonic crystal fiber was designed based on Topas cyclic olefin copolymer with low loss. The single-mode transmission range
confinement loss
dispersion and effective area of the double-cladding terahertz photonic crystal fiber were investigated by using the full-vector finite element method (FEM) and the mode choice theory. The results show that the confinement loss of the fundamental mode is far less than 0.1 dB/m and the confinement loss of second-order mode loss is larger than 1 dB/m at frequency range of 1-10 THz by tailoring the structure parameters. The broadband single mode transmission operates at bandwidth of 1-10 THz
and the group velocity dispersion (GVD) can be controlled at 0.1 ps/(THzcm) in the range of 1.5-10 THz.
关键词
Keywords
references
TONOUCHI M. Cutting-edge terahertz technology[J]. Nat. Photon., 2007, 1(2):97-105.
MIAO Q, WANG G, LI Y J. Research of landmine detection using terahertz technology[J]. Appl. Mech. Mater., 2014, 644-650:1313-1316.
王豆豆,王丽莉,张涛,等. 低损耗高双折射太赫兹Topas光子带隙光纤[J]. 光子学报, 2014, 43(6):0606002-1-5. WANG D D, WANG L L, ZHANG T, et al.. Low loss and high birefringence Topas photonic bandgap fiber at terahertz frequency[J]. Acta Photon. Sinica, 2014, 43(6):0606002-1-5. (in Chinese)
CERQUEIRA JR S A. Recent progress and novel applications of photonic crystal fibers[J]. Rep. Prog. Phys., 2010, 73(2):024401-1-21.
程伟,李九生. 基于光子晶体的双波长太赫兹波功分器研究[J]. 光子学报, 2014, 43(1):0123002. CHENG W, LI J S. A dual-wavelength terahertz wave power splitter based on photonic crystal[J]. Acta Photon. Sinica, 2014, 43(1):0123002. (in Chinese)
桑新柱,余重秀,王葵如,等. 高非线性光子晶体光纤中布拉格光栅的制作[J]. 光学精密工程, 2005, 13(6):633-636. SANG X Z, YU C X, WANG K R, et al.. Fabrication of Bragg grating in a highly nonlinear photonic crystal fiber[J]. Opt. Precision Eng., 2005, 13(6):633-636. (in Chinese)
KIM S, KEE C S, LEE J M. Single-mode condition and dispersion of terahertz photonic crystal fiber[J]. J. Opt. Soc. Korea, 2007, 11(3):97-100.
吴昊,施伟华,赵岩,等. 新型太赫兹波塑料光子晶体光纤的色散特性[J]. 光通信研究, 2011, 37(1):40-42. WU H, SHI W H, ZHAO Y, et al.. Dispersion properties of a novel THz plastic photonic crystal fiber[J]. Study Opt. Commun., 2011, 37(1):40-42. (in Chinese)
RANA S, HASANUZZAMAN G K M, HABIB S, et al.. Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding[J]. Opt. Eng., 2014, 53(11):115107-1-4.
汪静丽,陈鹤鸣. 菱形空气孔的单一偏振单模太赫兹光子晶体光纤[J]. 光学学报, 2014, 34(9):0906002-1-5. WANG J L, CHEN H M. Single-polarization single-mode rhombic-hole terahertz photonic crystal fibers[J]. Acta Opt. Sinica, 2014, 34(9):0906002-1-5. (in Chinese)
HAN H, PARK H, CHO M, et al.. Terahertz pulse propagation in a plastic photonic crystal fiber[J]. Appl. Phys. Lett., 2002, 80(15):2634-2636.
NIELSEN K, RASMUSSEN H K, ADAM A J L, et al.. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Opt. Express, 2009, 17(10):8592-8601.
ISLAM R, HABIB M S, HASANUZZAMAN G K M, et al.. Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime[J]. IEEE Photon. Technol. Lett., 2015, 27(21):2222-2225.
LI Y F, WANG C L, ZHANG N, et al.. Analysis and design of terahertz photonic crystal fibers by an effective-index method[J]. Appl. Opt., 2006, 45(33):8462-8465.
WHITE T P, MCPHEDRAN R C, DESTERKE C M, et al.. Confinement losses in microstructured optical fibers[J]. Opt. Lett., 2001, 26(21):1660-1662.
HOU Y, FAN F, ZHANG H, et al.. Terahertz single-polarization single-mode hollow-core fiber based on index-matching coupling[J]. IEEE Photon. Technol. Lett., 2012, 24(8):637-639.
WONG W S, PENG X, MCLAUGHLIN J M, et al.. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Opt. Lett., 2005, 30(21):2855-2857.
陈艳,周桂耀,夏长明,等. 具有双模特性的大模场面积微结构光纤的设计[J]. 物理学报, 2014, 63(1):014701-1-6. CHEN Y, ZHOU G Y, XIA C M, et al.. Analysis of a novel dual-mode large-mode-area micro-structured fiber[J]. Acta Phys. Sinica, 2014, 63(1):014701-1-6. (in Chinese)
HOO Y L, JIN W, JU J, et al. Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion[J]. Opt. Commun., 2004, 242(4-6):327-332.
MORTENSEN N A. Effective area of photonic crystal fibers[J]. Opt. Express, 2002, 10(7):341-348.
耿琰,王河林,陈中师. 基于CdSe/ZnS量子点薄膜结构的高双折射光子晶体光纤的色散与损耗控制[J]. 光子学报, 2015, 44(1):0106006. GENG Y, WANG H L, CHEN Z S. Dispersion and loss control of high birefringence photonic crystal fiber with CdSe/ZnS quantum dots film[J]. Acta Photon. Sinica, 2015, 44(1):0106006. (in Chinese)