浏览全部资源
扫码关注微信
天津理工大学材料物理研究所 光电器件与显示材料教育部重点实验室, 天津市光电显示材料与器件重点实验室 天津,300384
Received:25 February 2016,
Revised:29 March 2016,
Published:05 July 2016
移动端阅览
刘泽明, 徐建萍, 李霖霖等. 聚合物/碳量子点复合EL器件及光谱移动机理[J]. 发光学报, 2016,37(7): 823-828
LIU Ze-ming, XU Jian-ping, LI Lin-lin etc. Polymer/Carbon Quantum Dots Composite EL Devices and Tunable Spectra Mechanism[J]. Chinese Journal of Luminescence, 2016,37(7): 823-828
刘泽明, 徐建萍, 李霖霖等. 聚合物/碳量子点复合EL器件及光谱移动机理[J]. 发光学报, 2016,37(7): 823-828 DOI: 10.3788/fgxb20163707.0823.
LIU Ze-ming, XU Jian-ping, LI Lin-lin etc. Polymer/Carbon Quantum Dots Composite EL Devices and Tunable Spectra Mechanism[J]. Chinese Journal of Luminescence, 2016,37(7): 823-828 DOI: 10.3788/fgxb20163707.0823.
制备了结构为ITO/PEDOT:PSS/polyvinylcarbazole (PVK)/carbon quantum dots(CDs)/LiF/Al的电致发光器件。器件的发光光谱显示:在电压从7 V增大到13 V的过程中
光谱峰值从380 nm移动到520 nm
色坐标由(0.20
0.20)移动到(0.29
0.35)。经与PL光谱对比认为
EL光谱包含了PVK与碳量子点的双重贡献
随着电压的增大
碳量子点的发射逐渐增强
PVK发光先增强后减弱。结合器件能级结构讨论了器件的发光机制
认为低电场下的PVK兼具发光层和电子阻挡层的功能
EL光谱为PVK层和碳量子点的发光叠加;随着电场强度的增大
碳量子点和PVK界面区的空间电荷阻止了电子向PVK的传输
光谱转变为由碳量子点和激基复合物的共同贡献。
The electroluminescent devices with the structure of ITO/PEDOT:PSS/polyvinylcarbazole (PVK)/carbon quantum dots(CDs)/LiF/Al were fabricated. When the voltage raises from 7 V to 13 V
the voltage-dependent EL spectra can be observed to shift from 380 nm to 520 nm
and the color coordinates shift from (0.20
0.20) to (0.29
0.35). The device operating mechanism is investigated based on PL spectra of PVK and CDs and device energy-level diagram. PVK layer is considered to be responsible for electron blocking and meanwhile the emission in low electric field. The EL spectra are proposed to be the overlapping of PVK and CDs and their interface. With the voltage increase
the emission intensity of CDs displays enhancement but the converse trend is observed for PVK. Under high field
electroplex emission at PVK/CDs interface is known to contributed to whole EL spectra combining with CDs emission.
张世明,陈宇,王学会,等. 一种基于蓝色荧光与磷光敏化技术的高显色指数白光有机电致发光器件的制备[J]. 发光学报, 2012, 33(1):97-101. ZHANG S M, CHEN Y, WANG X H, et al.. White organic light-emitting diodes with high color rendering index using phosphorescent sensitizer and blue fluorescent emitter[J]. Chin. J. Lumin., 2012, 33(1):97-101. (in Chinese)
WANG X M, TIAN H, MOHAMMAD M A, et al.. A spectrally tunable all-graphene-based flexible field-effect light-emitting device[J]. Nat. Commun., 2015, 6:7767-1-6.
CHITNIS A, SUN J, MANDAVILLI V, et al.. Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm[J]. Appl. Phys. Lett., 2002, 81(18):3491-3493.
BURROWS P E, KHALFIN V, GU G, et al.. Control of microcavity effects in full color stacked organic light emitting devices[J]. Appl. Phys. Lett., 1998, 73(4):435-437.
JOO C W, MOON J, HAN J H, et al.. Color temperature tunable white organic light-emitting diodes[J]. Org. Electron., 2014, 15(1):189-195.
UDAGAWA K, SASABE H, IGARASHI F, et al.. Simultaneous realization of high EQE of 30%, low drive voltage, and low efficiency roll-off at high brightness in blue phosphorescent OLEDs[J]. Adv. Opt. Mater., 2016, 4(1):86-90.
ZHAO Y B, CHEN R, GAO Y, et al.. AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device[J]. Org. Electron., 2013, 14(12):3195-3200.
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525):96-99.
HAN J, BONG J, LIM T, et al.. Water repellent spray-type encapsulation of quantum dot light-emitting diodes using super-hydrophobic self-assembled nanoparticles[J]. Appl. Surf. Sci., 2015, 353:338-341.
LI H T, HE X D, KANG Z H, et al.. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew. Chem. Int. Ed., 2010, 49(26):4430-4434.
WANG Q L, ZHENG H Z, LONG Y J, et al.. Microwave-hydrothermal synthesis of fluorescent carbon dots from graphite oxide[J]. Carbon, 2011, 49(9):3134-3140.
CHANDRA S, PATHAN S H, MITRA S, et al.. Tuning of photoluminescence on different surface functionalized carbon quantum dots[J]. RSC Adv., 2012, 2(9):3602-3606.
WANG F, CHEN Y H, LIU C Y, et al.. White light-emitting devices based on carbon dots' electroluminescence[J]. Chem. Commun., 2011, 47(12):3502-3504.
ZHANG X Y, ZHANG Y, WANG Y, et al.. Color-switchable electroluminescence of carbon dot light-emitting diodes[J]. ACS Nano, 2013, 7(12):11234-11241.
VECA L M, DIAC A, MIHALACHE I, et al.. Electroluminescence of carbon 'quantum' dots-from materials to devices[J]. Chem. Phys. Lett., 2014, 613:40-44.
ZHANG H C, HUANG H, MING H, et al.. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J]. J. Mater. Chem., 2012, 22(21):10501-10506.
CAO L, SAHU S, ANILKUMAR P, et al.. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J]. J. Am. Chem. Soc., 2011, 133(13):4754-4757.
WANG X, CAO L, LU F S, et al.. Photoinduced electron transfers with carbon dots[J]. Chem. Commun., 2009(25):3774-3776.
WANG F, PANG S P, WANG L, et al.. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem. Mater., 2010, 22(16):4528-4530.
D'ANGELO P, BARRA M, CASSINESE A, et al.. Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices applications[J]. Solid-State Electron., 2007, 51(1):123-129.
DAS S K, LIU Y Y, YEOM S, et al.. Single-particle fluorescence intensity fluctuations of carbon nanodots[J]. Nano Lett., 2014, 14(2):620-625.
孙力,邵喜斌,钱磊,等. PVK三线态激基复合物的发光及其受紫外光辐照的影响[J]. 发光学报, 2010, 31(3):331-336. SUN L, SHAO X B, QIAN L, et al.. Emission of electroplex in PVK and its properties under UV irradiation[J]. Chin. J. Lumin., 2010, 31(3):331-336. (in Chinese)
YANG S Y, LIU D A, JIANG Y, et al.. Impact of electric fields on the emission from organic light-emitting diodes based on polyvinylcarbazole (PVK)[J]. J. Lumin., 2007, 122-123:614-616.
NG T W, LO M F, LEE S T, et al.. Exciplex emission and its relationship with depletion organic heterojunction[J]. Org. Electron., 2012, 13(9):1641-1645.
YANG D, DUAN Y H, YANG Y Q, et al.. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers[J]. J. Lumin., 2015, 166:77-81.
WEN L, LI F S, XIE J X, et al.. Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes[J]. J. Lumin., 2011, 131(11):2252-2254.
LI J M, XU Z, ZHANG F J, et al.. Electroplex emission of the blend film of PVK and DPVBi[J]. Solid-State Electron., 2010, 54(4):349-352.
DO S, KWON W, RHEE S W. Soft-template synthesis of nitrogen-doped carbon nanodots:tunable visible-light photoluminescence and phosphor-based light-emitting diodes[J]. J. Mater. Chem. C, 2014, 2(21):4221-4226.
陈义鹏,辛传祯,罗程远,等. PVK空穴传输层对Ndq3近红外发光二极管性能的影响[J]. 发光学报, 2013, 34(7):888-893. CHEN Y P, XIN C Z, LUO C Y, et al.. Influence of PVK hole transport layer on Ndq3 near-infrared organic light emitting diodes[J]. Chin. J. Lumin., 2013, 34(7):888-893. (in Chinese)
GANZORIG C, SAKOMURA M, UEDA K, et al.. Current-voltage behavior in hole-only single-carrier devices with self-assembling dipole molecules on indium tin oxide anodes[J]. Appl. Phys. Lett., 2006, 89(26):263501-1-3.
SON D I, PARK D H, CHOI W K, et al.. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nanotechnology, 2009, 20(19):195203-1-6.
0
Views
80
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution