SHEN Hong-jun, LI Ting, LU Hui-dong etc. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Light Traping[J]. Chinese Journal of Luminescence, 2016,37(7): 816-822
SHEN Hong-jun, LI Ting, LU Hui-dong etc. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Light Traping[J]. Chinese Journal of Luminescence, 2016,37(7): 816-822 DOI: 10.3788/fgxb20163707.0816.
Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Light Traping
An amorphous silicon thin-film solar cell with an anti-reflection coating of light cone photonic crystal and a back surface field layer of rectangular pyramid grating is proposed. The thickness of the cell is 1.45m and the thickness of the absorbing layer is 1m. Using Rigorous Coupled Wave Analysis method
the parameters of the cell are optimized based the diffraction characteristics of the photonic crystal and the sub-wavelength grating. When the light cone angle is 72
the lattice constant is 1200 nm
and the bottom radius is 100 nm
a relative increase of 11.54% for the integrated absorption inside the solar cell can be achieved between 300 nm and 600 nm
compared to an equivalent but no anti-reflection coating cell. When the rectangular pyramid grating period is 1.2m
the duty cycle is 0.38
and the depth of the grating is 560 nm
a relative increase of 3.75% for the integrated absorption inside the solar cell can be achieved between 600 nm and 850 nm. According to the simulation
the absorption of the designed thin-film solar cell is over than 80% in the incident angle range of 0-75 and the wavelength between 300 nm and 750 nm
and the average absorption is up to 92%. This solar cell is designed to meet the demanding requirements of a wide spectrum and wide-angle light capture.
关键词
Keywords
references
GREEN M A, EMERY K, HISHIKAWA Y, et al.. Solar cell efficiency tables (version 46)[J]. Prog. Photovolt.:Res. Appl., 2015, 23(7):805-812.
MUNZER K A, HOLDERMANN K T, SCHLOSSER R E, et al..Thin monocrystalline silicon solar cells[J]. IEEE Trans. Electron Dev., 1999, 46(10):2055-2061.
GREEN M. Third Generation Photovoltaics:Advanced Solar Energy Conversion[M]. Berlin Heidelberg:Springer-Verlag, 2003.
LI X W, TAN Q F, JIN G F. Surface profile optimization of antireflection gratings for solar cells[J]. Optik-Int. J. Light Electron Opt., 2011, 122(23):2078-2082.
LIN L J H, CHIOU Y P. Improving thin-film crystalline silicon solar cell efficiency with back surface field layer and blaze diffractive grating[J]. Solar Energy, 2012, 86(5):1485-1490.
BISWAS R, XU C. Photonic and plasmonic crystal based enhancement of solar cells-Theory of overcoming the Lambertian limit[J]. J. Non-Cryst. Solids, 2012, 358(17):2289-2294.
LI H H, WANG Q K, CHEN J, et al.. Light trapping in amorphous silicon solar cells with periodic grating structures[J]. Opt. Commun., 2012, 285(5):808-815.
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20):2059-2062.
YABLONOVITCH E. Photonic crystals[J]. J. Mod. Opt., 1994, 41(2):173-194.
DOMNGUEZ S, GARCA O, EZQUER M, et al.. Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells[J]. Photon. Nanostruct.-Fundam. Appl., 2012, 10(1):46-53.
YU W J, SHEN L, LONG Y B, et al.. Highly efficient and high transmittance semitransparent polymer solar cells with one-dimensional photonic crystals as distributed Bragg reflectors[J]. Org. Electron., 2014, 15(2):470-477.
CHUTINAN A, KHERANI N P, ZUKOTYNSKI S. High-efficiency photonic crystal solar cell architecture[J]. Opt. Express, 2009, 17(11):8871-8878.
时彦朋,王晓东,刘雯,等. 新型硅薄膜太阳能电池混合陷光结构[J]. 光子学报, 2014, 43(5):0523001-1-5. SHI Y P, WANG X D, LIU W, et al.. New hybrid light trapping structure in silicon thin film solar cells[J]. Acta Photon. Sinica, 2014, 43(5):0523001-1-5. (in Chinese)
PATTNAIK S, CHAKRAVARTY N, BISWAS R, et al.. Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells[J]. Solar Energy Mater. Solar Cells, 2014, 129:115-123.
武振华,李思敏,张文涛,等. 一维和双层二维光子晶体太阳能电池背反射器[J]. 光子学报, 2016, 45(2):0223003-1-5. WU Z H, LI S M, ZHANG W T, et al.. Back reflector of solar cells consisting of one-dimensional photonic crystal and double-layered two-dimensional photonic crystal[J]. Acta Photon. Sinica, 2016, 45(2):0223003-1-5. (in Chinese)
MOHARAM M G, POMMET D A, GRANN E B, et al.. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings:enhanced transmittance matrix approach[J]. J. Opt. Soc. Am. A, 1995, 12(5):1077-1086.
MOHARAM M G, GRANN E B, POMMET D A, et al.. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. J. Opt. Soc. Am. A, 1995, 12(5):1068-1076.
JIANG J H, DEGUZMAN P C, NORDIN G P. Analysis of stacked rotated gratings[J]. Appl. Opt., 2007, 46(8):1177-1183.
PHILIPP H R. Optical properties of silicon nitride[J]. J. Electrochem. Soc., 1973, 120(2):295-300.
DEVORE J R. Refractive indices of rutile and sphalerite[J]. J. Opt. Soc. Am., 1951, 41(6):416-419.
BOND W L. Measurement of the refractive indices of several crystals[J]. J. Appl. Phys., 1965, 36(5):1674-1677.
PALIK E D, GHOSH G. Electronic Handbook of Optical Constants of Solids[M]. San Diego:Academic Press, 1999.
ZHENG G G, XU L H, PEI S X, et al.. Theoretical analysis of performance improvement of thin film solar cells with two-dimensional photonic crystals and distributed Bragg reflector textured structures[J]. Opt. Commun., 2013, 309:318-322.
MLLER J, RECH B, SPRINGER J, et al.. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6):917-930.
SOLNTSEV S, ZEMAN M. Optical modeling of thin-film silicon solar cells with submicron periodic gratings and nonconformal layers[J]. Energy Proced., 2011, 10:308-312.