and it is regarded as a breakthrough of the new materials. Thanks to the wide band gap
thermal stability
high working power and other properties
GaN based materials have become "the most important
after the silicon semiconductor material." It will bring great benefits for the photoelectric and microelectric devices if the graphene can be successfully combined with GaN based materials. There have already been some breakthroughs in the research of combination of graphene and GaN based materials. This paper briefly summarized recent findings of physical mechanisms of the contact between graphene and GaN-based materials and the researches of the applications of graphene to the GaN-based materials.
关键词
Keywords
references
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J]. Phys. Rev. B, 1997, 56(16):R10024-R10027.
YU E T, DANG X Z, ASBECK P M, et al.. Spontaneous and piezoelectric polarization effects in Ⅲ-V nitride heterostructures[J]. J. Vac. Sci. Technol. B, 1999, 17(4):1742-1749.
GUO Q X, YOSHIDA A. Temperature dependence of band gap change in InN and AlN[J]. Jpn. J. Appl. Phys., 1994, 33(Part 1, 5A):2453-2456.
WU J, WALUKIEWICZ W, SHAN W, et al.. Temperature dependence of the fundamental band gap of InN[J]. J. Appl. Phys., 2003, 94(7):4457-4460.
MONROY E, GOGNEAU N, ENJALBERT F, et al.. Molecular-beam epitaxial growth and characterization of quaternary Ⅲ-nitride compounds[J]. J. Appl. Phys., 2003, 94(5):3121-3127.
HIRSCH A. The era of carbon allotropes[J]. Nat. Mater., 2010, 9(11):868-871.
STANKOVICH S, DIKIN D A, DOMMETT G H B, et al.. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286.
BOLOTIN K I, SIKES K J, JIANG Z, et al.. Ultrahigh electron mobility in suspended grapheme[J]. Solid State Commun., 2008, 146(9-10):351-355.
BALANDIN A A, GHOSH S, BAO W Z, et al.. Superior thermal conductivity of single-layer grapheme[J]. Nano Lett., 2008, 8(3):902-907.
GEIM A K, NOVOSELOV K S. The rise of grapheme[J]. Nat. Mater., 2007, 6(3):183-191.
NAIR R R, BLAKE P, GRIGORENKO A N, et al.. Fine structure constant defines visual transparency of grapheme[J]. Science, 2008, 320(5881):1308-1308.
LEE C, WEI X D, KYSAR J W, et al.. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887):385-388.
TONGAY S, LEMAITRE M, MIAO X, et al.. Rectification at graphene-semiconductor interfaces:zero-gap semiconductor-based diodes[J]. Phys. Rev. X, 2012, 2(1):011002-1-10.
ZHONG H J, LIU Z H, XU G Z, et al.. Self-adaptive electronic contact between graphene and semiconductors[J]. Appl. Phys. Lett., 2012, 100(12):122108-1-4.
ZHONG H J, XU K, LIU Z H, et al.. Charge transport mechanisms of graphene/semiconductor Schottky barriers:a theoretical and experimental study[J]. J. Appl. Phys., 2014, 115(1):013701-1-9.
GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al.. Doping graphene with metal contacts[J]. Phys. Rev. Lett., 2008, 101(2):026803-1-4.
FISICHELLA G, GRECO G, ROCCAFORTE F, et al.. Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale[J]. Nanoscale, 2014, 6(15):8671-8680.
PARK P S, REDDY K M, NATH D N, et al.. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion[J]. Appl. Phys. Lett., 2013, 102(15):153501-1-5.
ZHONG H J, LIU Z H, SHI L, et al.. Graphene in Ohmic contact for both n-GaN and p-GaN[J]. Appl. Phys. Lett., 2014, 104(21):212101-1-5.
TONGAY S, LEMAITRE M, SCHUMANN T, et al.. Graphene/GaN schottky diodes:stability at elevated temperatures[J]. Appl. Phys. Lett., 2011, 99(10):102102-1-4.
YAN Z, LIU G X, KHAN J M, et al.. Graphene quilts for thermal management of high-power GaN transistors[J]. Nat. Commun., 2012, 3:827-835.
WEBER C M, EISELE D M, RABE J P, et al.. Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region[J]. Small, 2010, 6(2):184-189.
KIM B J, LEE C, JUNG Y, et al.. Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes[J]. Appl. Phys. Lett., 2011, 99(14):143101-1-4.
LIN F, CHEN S W, MENG J, et al.. Graphene/GaN diodes for ultraviolet and visible photodetectors[J]. Appl. Phys. Lett., 2014, 105(7):073103-1-6.
SEO T H, SHIN G, KIM B K, et al.. Enhancement of light output power in ultraviolet light emitting diodes using graphene film on self-assembled Au nanocluster by agglomeration process[J]. J. Appl. Phys., 2013, 114(22):223105-1-5.
SHIM J P, KIM D, CHOEM, et al.. A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs[J]. Nanotechnology, 2012, 23(25):255201-1-6.
DAS S, SUDHAGAR P, ITO E, et al.. Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(38):20490-20497.
WANG L C, ZHANG YY, LI X, et al.. Improved transport properties of graphene/GaN junctions in GaN-based vertical light emitting diodes by acid doping[J]. RSC Adv., 2013, 3(10):3359-3364.