浏览全部资源
扫码关注微信
1. 南京理工大学紫金学院 电子工程与光电技术学院,江苏 南京,210046
2. 中国药科大学 理学院,江苏 南京,210096
Received:29 January 2016,
Revised:20 May 2016,
Published:05 July 2016
移动端阅览
申继伟, 罗为, 杜锦丽. 非晶态Si/SiN<sub><em>x</em></sub>超晶格材料的发光与非线性光学特性[J]. 发光学报, 2016,37(7): 773-777
SHEN Ji-wei, LUO Wei, DU Jin-li. Linear and Nonlinear Optical Properties of a-Si/SiN<sub><em>x</em></sub> Superlattice[J]. Chinese Journal of Luminescence, 2016,37(7): 773-777
申继伟, 罗为, 杜锦丽. 非晶态Si/SiN<sub><em>x</em></sub>超晶格材料的发光与非线性光学特性[J]. 发光学报, 2016,37(7): 773-777 DOI: 10.3788/fgxb20163707.0773.
SHEN Ji-wei, LUO Wei, DU Jin-li. Linear and Nonlinear Optical Properties of a-Si/SiN<sub><em>x</em></sub> Superlattice[J]. Chinese Journal of Luminescence, 2016,37(7): 773-777 DOI: 10.3788/fgxb20163707.0773.
采用射频磁控反应溅射技术制备了a-Si/SiN
x
超晶格材料
并采用热退火技术对材料进行处理。利用吸收光谱和X射线衍射谱对材料进行表征
结果表明Si层呈现非晶态。为研究材料的三阶非线性光学特性
对材料进行Z扫描研究
测量数据表明
材料的非线性吸收为反饱和吸收
材料非线性折射率呈现为负值
该材料的
(3)
的实部为4.5710
-17
C(1.3910
-7
esu)
虚部为1.4910
-17
C (4.4810
-8
esu)
该极化率数值比体硅材料的
(3)
值大5个数量级。对该材料非线性光学产生的机理进行了研究
认为材料体现出的较强的量子限制效应是非线性极化率增强的主要来源。
Using RF magnetron sputtering technique and thermal annealing
a-Si/SiN
x
superlattice was fabricated. The absorption measurement and X-ray diffraction show that the Si layer is amorphous. The Z-scan technique is used to research the nonlinear optical properties of a-Si/a-SiN
x
superlattice. The results indicate that the nonlinear absorption is counter-saturated absorption and the nonlinear refractive index of the sample is a negative value. Moreover
the real and imaginary parts of
(3)
have been calculated to be 4.5710
-17
C(1.3910
-7
esu) and 1.4910
-17
C (4.4810
-8
esu)
respectively
which exceeds the value of bulk silicon by more than five order of magnitude. The enhancement of nonlinear refractive index of Si/SiN
x
superlattice is mainly attributed to intensive quantum confinement.
MARTNEZ A, HERNNDEZ S, PELLEGRINO P, et al.. Optical nonlinearities in Si-nanocrystals at 1064 nm excited by nanosecond-pulses[J]. J. Appl. Phys., 2010, 108(1):014311-1-6.
IMAKITA K, ITO M, FUJII M, et al.. Nonlinear optical properties of Si nanocrystals embedded in SiO2 prepared by a cosputtering method[J]. J. Appl. Phys., 2009, 105(9):093531-1-5.
TOUDERT J, FERNANDEZ H, BABONNEAU D, et al.. Linear and third-order nonlinear optical responses of multilayered Ag:Si3N4 nanocomposites[J]. Nanotechnology, 2009, 20(47):475705-1-7.
COTTER D, BURT M G, MANNING R J. Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites[J]. Phys. Rev. Lett., 1992, 68(8):1200-1203.
XIA J B, CHEAH K W. Quantum confinement effect in silicon quantum-well layers[J]. Phys. Rev. B, 1997, 56(23):14925-14928.
LIU N N, SUN J M, PAN S H, et al.. Third-order optical nonlinear properties of amorphous Si/SiO2 superlattices fabricated by magnetron sputtering[J]. Opt. Commun., 2000, 176(1-3):239-243.
ABELES B. Amorphous semiconductor superlattices[J]. Superlattice. Microst., 1989, 5(4):473-480.
WANG L, HUANG X, MA Z, et al.. Thermal annealing of a-Si:H/a-SiNx:H multilayers[J]. Appl. Phys. A, 2002, 74(6):783-786.
MONROY B M, SANTANA G, AGUILAR-HERNNDEZ J, et al.. Photoluminescence properties of SiNx/Si amorphous multilayer structures grown by plasma-enhanced chemical vapor deposition[J]. J. Lumin., 2006, 121(2):349-352.
张春华,郭亨群,王国立,等. a-Si/a-SiNx超晶格材料光学特性[J]. 功能材料与器件学报, 2009, 15(3):223-227. ZHANG C H, GUO H Q, WANG G L, et al.. Optical properties of a-Si/a-SiNx superlattices[J]. J. Funct. Mater. Dev., 2009, 15(3):223-227. (in Chinese)
申继伟,郭亨群,吕蓬,等. Si/SiNx超晶格材料的非线性光学特性[J]. 发光学报, 2008, 29(6):1045-1049. SHEN J W, GUO H Q, LV P, et al.. Nonlinear optical properties of Si/SiNx superlattice[J]. Chin. J. Lumin., 2008, 29(6):1045-1049. (in Chinese)
FEJFAR A, ZEMEK J, TRCHOVM. Hydrogen and nitrogen bonding in silicon nitride layers deposited by laser reactive ablation:infrared and X-ray photoelectron study[J]. Appl. Phys. Lett., 1995, 67(22):3269-3271.
孟祥森,宋晨路,余京松,等. 低温APCVD法制备氮化硅薄膜[J]. 陶瓷学报, 1999, 20(3):119-122. MENG X S, SONG C L, YU J S, et al.. Silicon nitride thin films prepared by low temperature atmosptheric perssure chemical vapor deposition[J]. J. Ceram., 1999, 20(3):119-122. (in Chinese)
TSU D V, LUCOVSKY G, MANTINI M J. Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition[J]. Phys. Rev. B, 1986, 33(10):7069-7076.
WANG L, MA Z Y, HUANG X F, et al.. The room-temperature visible photoluminescence from nanocrystalline Si in Si/SiNx superlattices[J]. Solid State Commun., 2001, 117(4):239-244.
SHEIK-BAHAE M, SAID A A, WEI T H, et al.. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quant. Electron., 1990, 26(4):760-769.
HERNNDEZ S, PELLEGRINO P, MARTNEZ A, et al.. Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition[J]. J. Appl. Phys., 2008, 103(6):064309-1-6.
PRAKASH G V, CAZZANELLI M, GABURRO Z, et al.. Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition[J]. J. Appl. Phys., 2002, 91(7):4607-4610.
徐明,魏屹,何贤模,等. Si/SiNx多层膜能带结构的理论研究[J]. 四川师范大学学报(自然科学版), 2010, 33(4):545-548. XU M, WEI Y, HE X M, et al.. Theoretic study on band structure of Si/SiNx multilayer film[J]. J. Sichuan Norm. Univ. (Nat. Sci.), 2010, 33(4):545-548. (in Chinese)
YILDIRIM H, BULUTAY C. Enhancement of optical switching parameter and third-order optical nonlinearities in embedded Si nanocrystals:a theoretical assessment[J]. Opt. Commun., 2008, 281(15-16):4118-4120.
0
Views
46
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution