LU Lin, LI Ming-chao, XU Fu-jun etc. n-i-p Type InGaN Solar Cells with Graded In Composition[J]. Chinese Journal of Luminescence, 2016,37(6): 682-687 DOI: 10.3788/fgxb20163706.0682.
n-i-p Type InGaN Solar Cells with Graded In Composition
In order to optimize InGaN solar cell (SC) structures and effectively guide the preparation
the properties of n-i-p InGaN SC structures with graded In composition were investigated. Through APSYS simulation software
the performances of p-i-n and n-i-p SC structures with graded In composition were compared. It is found that n-i-p structures don't have obvious advantage in the device performance over p-i-n ones when In composition of i-InGaN layer is low
which yet presents better performance with higher In composition. When In composition is 0.62
the SC conversion efficiency reaches 8.48%. The further analysis indicates that the polarization electric field in InGaN layer has the same directions with the built-in one in the depletion region for the case of n-i-p SC structures
which is very beneficial for carrier transport. The n-i-p SC structures with graded In composition are proven to be beneficial for high performance InGaN SCs.
关键词
Keywords
references
WU J, WALUKIEWICZ W, YU K M, et al.. Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system [J]. J. Appl. Phys., 2003, 94(10):6477-6482.
DAVYDOV V Y, KLOCHIKHIN A A, SEISYAN R P, et al.. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap [J]. Phys. Stat. Sol.(b), 2002, 229(3):R1-R3.
SINGH R, DOPPALAPUDI D, MOUSTAKAS T D, et al.. Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition [J]. Appl. Phys. Lett., 1997, 70(9):1089-1091.
EL-MASRY N A, PINER E L, LIU S X, et al.. Phase separation in InGan grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 1998, 72(1):40-42.
BAE S Y, SHIM J P, LEE D S, et al.. Improved photovoltaic effects of a vertical-type InGaN/GaN multiple quantum well solar cell [J]. Jpn. J. Appl. Phys., 2011, 50(9):092301-1-5.
BAI J, YANG C C, ATHANASIOU M, et al.. Efficiency enhancement of InGaN/GaN solar cells with nanostructures [J]. Appl. Phys. Lett., 2014, 104(5):051129-1-4.
SHEU J K, CHEN F B, WU S H, et al.. Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns [J]. Opt. Express, 2014, 22(S5):A1222-A1228.
CHANG Y A, CHEN F M, TSAI Y L, et al.. Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes [J]. Opt. Express, 2014, 22(S5):A1334-A1342.
CAI X, WANG Y, CHEN B, et al.. Investigation of InGaN p-i-n homojunction and heterojunction solar cells [J]. IEEE Photon. Technol. Lett., 2013, 25(1):59-62.
Jr WIERER J J, FISCHER A J, KOLESKE D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices [J]. Appl. Phys. Lett., 2010, 96(5):051107-1-3.
NEUFELD C J, CRUZ S C, FARRELL R M, et al.. Effect of doping and polarization on carrier collection in InGaN quantum well solar cells [J]. Appl. Phys. Lett., 2011, 98(24):243507-1-3.
CHANG J Y, LIOU B T, LIN Y H, et al.. Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN p-i-n solar cells with polarization compensation interlayers [J]. Opt. Lett., 2011, 36(17):3500-3502.
CONNELLY B C, GALLINAT C S, WOODWARD N T, et al.. Polarization enhanced carrier transport in a p-down n-GaN/i-InGaN/p-GaN solar cell structure [C]. Proceedings of Conference on Lasers and Electro-optics, San Jose, USA, 2012:1-2.
HOLEC D, COSTA P M F J, KAPPERS M J, et al.. Critical thickness calculations for InGaN/GaN [J]. J.Cryst.Growth, 2007, 303(1):314-317.
LEYER M, STELLMACH J, MEISSNER C, et al.. The critical thickness of InGaN on (0001) GaN [J]. J.Cryst.Growth, 2008, 310(23):4913-4915.
ZHU D, XU J R, NOEMAUN A N, et al.. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes [J]. Appl. Phys. Lett., 2009, 94(8):081113-1-3.
CHEN J R, LU T C, KUO H C, et al.. Study of InGaN-GaN light-emitting diodes with different last barrier thicknesses [J]. IEEE Photon. Technol. Lett., 2010, 22(12):860-862.
PIPREK J. Nitride Semiconductor Devices: Principles and Simulation [M]. Weinheim: Wiley-VCH, 2007.
FIORENTINI V, BERNARDINI F, AMBACHER O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures [J]. Appl. Phys. Lett., 2002, 80(7):1204-1206.
Simulation on Nitrogen-polar InGaN-based Red Light-emitting Diodes with Compositionally Graded Quantum Barrier Layer
Cs2(Ag∶Cu)BiBr6 Double Perovskite Solar Cells
Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers
Design of InGaN/GaN MQWs Structures for Monolithic Phosphor-free White LEDs Based on GaN Micro-arrays
Progress of Lead-free Perovskite Photovoltaic Materials and Devices
Related Author
JI Zeting
DENG Gaoqiang
WANG Yusen
YU Jiaqi
ZUO Changcai
GAO Haozhe
DUAN Bin
ZHANG Baolin
Related Institution
College of Physics, Jilin University
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Institute of Polymer Chemistry, College of Chemistry, Nankai University
Tan Kah Kee Innovation Laboratory, Future Display Institue of Xiamen