浏览全部资源
扫码关注微信
1. 河北大学 物理科学与技术学院,河北 保定,071002
2. 北华航天工业学院基础部,河北 廊坊,065000
Received:31 December 2015,
Revised:23 January 2016,
Published:05 May 2016
移动端阅览
李永辉, 董丽芳, 甘延标. 超长射流等离子体在介质管内的传播机制[J]. 发光学报, 2016,37(5): 597-602
LI Yong-hui, DONG Li-fang, GAN Yan-biao. Propagation Mechanism of Super Long Plasma Jet in The Dielectric Tube[J]. Chinese Journal of Luminescence, 2016,37(5): 597-602
李永辉, 董丽芳, 甘延标. 超长射流等离子体在介质管内的传播机制[J]. 发光学报, 2016,37(5): 597-602 DOI: 10.3788/fgxb20163705.0597.
LI Yong-hui, DONG Li-fang, GAN Yan-biao. Propagation Mechanism of Super Long Plasma Jet in The Dielectric Tube[J]. Chinese Journal of Luminescence, 2016,37(5): 597-602 DOI: 10.3788/fgxb20163705.0597.
利用交流驱动的单针射流等离子体装置
在介质管内产生了可以沿着介质管任意弯曲的超长射流等离子体
且可以喷射到介质管外的空气当中。利用高速相机对介质管内等离子体的传播过程进行拍照
研究了这种超长等离子体在介质管内的传播机制。研究发现
该装置在大气压下产生的等离子体长度可以达到约85 cm。在外加电压的正、负半周期
介质管内的等离子体具有不同的形貌和传播机制。正半周等离子体是以"等离子子弹"的方式向前传播
而负半周是以连续模式向前传播。分析发现
放电形成的空间电荷与介质管壁上的壁电荷之间形成的电场
是影响介质管内等离子体传播的主要因素。
Using an alternating-current driving single needle jet plasma device
we produce a super long plasma jet (SLPJ) in the dielectric tube. The super long plasma jet (SLPJ) can be arbitrarily curved along the tube and can be sprayed into the air outside the tube. Photographing the propagation process of the SLPJ in the tube helps in understanding the corresponding transmission mechanism. It is found that
under normal atmospheric pressure
the SLPJ can reach about 85 cm
and owns different morphologies and transmission mechanisms during the negative and the positive half cycles. During the positive half cycle
the SLPJ spreads forward through the way of "plasma bullet"
while through the continuous model in the negative half cycle. Analysis reveals that
the electric field
produced by the space charge due to discharge and wall charge on the dielectric tube wall
is the main reason that influences the transmission mechanism.
PEI X, LIU J, XIAN Y, et al.. A battery-operated atmospheric-pressure plasma wand for biomedical applications[J]. J. Phys. D:Appl. Phys., 2014, 47(14):145204-1-6.
TANG J, DUAN Y X, ZHAO W. Characterization and mechanism studies of dielectric barrier discharges generated at atmospheric pressure[J]. Appl. Phys. Lett., 2010, 96(19):191503-1-3.
STAROSTIN S A, PREMKUMAR P A, CREATORE M, et al.. High current diffuse dielectric barrier discharge in atmospheric pressure air for the deposition of thin silica-like films[J]. Appl. Phys. Lett., 2010, 96(6):061502-1-3.
BECKER K H, SCHOENBACH K H, EDEN J G. Microplasmas and applications[J]. J. Phys. D:Appl. Phys., 2006, 39(3):R55-R70.
MARIOTTI D. Nonequilibrium and effect of gas mixtures in an atmospheric microplasma[J]. Appl. Phys. Lett., 2008, 92(15):151505-1-3.
KIM S J, CHUNG T H, BAE S H. Striation and plasma bullet propagation in an atmospheric pressure plasma jet[J]. Phys. Plasmas, 2010, 17(5):053504-1-5.
WALSH J L, IZA F, JANSON N B, et al.. Three distinct modes in a cold atmospheric pressure plasma jet[J]. J. Phys. D:Appl. Phys., 2010, 43(7):075201-1-14.
江南,曹则贤. 一种大气压放电氦等离子体射流的实验研究[J]. 物理学报, 2010, 59(5):3324-3330. JIANG N, CAO Z X. Experimental studies on an atmospheric pressure He plasma jet[J]. Acta Phys. Sinica, 2010, 59(5):3324-3330. (in Chinese)
SANDS B L, GANGULY B N, TACHIBANA K. A streamer-like atmospheric pressure plasma jet[J]. Appl. Phys. Lett., 2008, 92(15):151503-1-3.
XIAN Y B, LU X P, WU S Q, et al.. Are all atmospheric pressure cold plasma jets electrically driven?[J]. Appl. Phys. Lett., 2012, 100(12):123702-1-4.
LU X, XIONG Q, XIONG Z, et al.. Propagation of an atmospheric pressure plasma plume[J]. J. Appl. Phys., 2009, 105(4):043304-1-4.
HONG Y C, CHO S C, KIM J H, et al.. A long plasma column in a flexible tube at atmospheric pressure[J]. Phys. Plasmas, 2007, 14(7):074502-1-4.
HONG Y C, CHO S C, UHM H S. Twin injection-needle plasmas at atmospheric pressure[J]. Appl. Phys. Lett., 2007, 90(14):141501-1-3.
LI S Z, HUANG W T, WANG D Z. Spectroscopic study of a long high-electron-density argon plasma column generated at atmospheric pressure[J]. Phys. Plasmas, 2010, 17(2):020702-1-4.
LI S Z, HUANG W T, ZHANG J L, et al.. Discharge characteristics of an atmospheric-pressure argon plasma column generated with a single-electrode configuration[J]. Phys. Plasmas, 2009, 16(7):073503-1-6.
LI X C, JIA P Y, YUAN N, et al.. Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations[J]. Chin. Phys. B, 2012, 21(4):045204-1-6.
POINTU A M, RICARD A, OIDC E. Nitrogen atmospheric pressure post discharges for surface biological decontamination inside small diameter tubes[J]. Plasma Processes and Polymers, 2008, 5(6):559-568.
YOSHIKI H, SAITO T. Preparation of TiO2 thin films on the inner surface of a quartz tube using atmospheric-pressure microplasma[J]. J. Vacuum Sci. Technol. A, 2008, 26(3):338-343.
董丽芳,李永辉. 大气压氩气射流等离子体放电发展速度研究[J]. 发光学报, 2014, 35(4):476-480. DONG L F, LI Y H. Study on propagation velocity in hollow needle to plate discharge[J]. Chin. J. Lumin., 2014, 35(4):476-480. (in Chinese)
0
Views
200
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution