ZHAO Yong-bing, ZHANG Yun, CHENG Zhe etc. Al<sub>2</sub>O<sub>3</sub>/AlGaN/GaN MOS-HEMT with High On/Off Drain Current Ratio[J]. Chinese Journal of Luminescence, 2016,37(5): 578-582
ZHAO Yong-bing, ZHANG Yun, CHENG Zhe etc. Al<sub>2</sub>O<sub>3</sub>/AlGaN/GaN MOS-HEMT with High On/Off Drain Current Ratio[J]. Chinese Journal of Luminescence, 2016,37(5): 578-582 DOI: 10.3788/fgxb20163705.0578.
Al2O3/AlGaN/GaN MOS-HEMT with High On/Off Drain Current Ratio
This essay has reported the fabrication of a metal-oxide-semiconductor AlGaN/GaN high electron mobility transistor (MOS-HEMT) with an Al
2
O
3
insulator layer which was deposited by atomic layer deposition (ALD) as the gate dielectric. The MOS-HEMT with a gate-drain distance of 10m exhibits a drive current density of 680 mA/mm at a gate-source bias (
V
gs
) of +3 V and a specific on-resistance of 1.47 mcm
2
. Under a negative gate bias of -20 V
the gate leakage current of the MOS HEMT is over four orders of magnitude
which is lower than that of the Schottky-gate HEMT. The off-state breakdown voltage is 640 V at drain leakage current of 27A/mm with
V
gs
=-14 V. The Schottky-gate HEMT leakage current is 191A at the gate bias of +2 V and the MOS HEMT leakage current is as low as 23.6 nA at the gate bias of +20 V
which is approximately seven orders of magnitude lower than that of the Schottky-gate HEMT with similar gate dimensions. The on/off drain-current ratio (I
on
/I
off
) is over 10
9
for the MOS-HEMT.
关键词
Keywords
references
IKEDA N, NIIYAMA Y, KAMBAYASHI H, et al.. GaN power transistors on Si substrates for switching applications[J]. Proc. IEEE, 2010, 98(7):1151-1161.
CHOW T P, TYAGI R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices[J]. IEEE Trans. Electron. Dev., 1994, 41(8):1481-1483.
TRIVEDI M, SHENAI K. Performance evaluation of high-power wide band-gap semiconductor rectifiers[J]. J. Appl. Phys., 1999, 85(9):6889-6897.
HASHIZUME T, OOTOMO S, HASEGAWA H. Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric[J]. Appl. Phys. Lett., 2003, 83(14):2952-2954.
KHAN M A, SIMIN G, YANG J W, et al.. Insulating gate Ⅲ-N heterostructure field-effect transistors for high-power microwave and switching applications[J]. IEEE Trans. Microw. Theory Tech., 2003, 51(2):624-633.
KHAN M A, HU X, SUMIN G, et al.. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor[J]. IEEE Electron. Dev. Lett., 2000, 21(2):63-65.
YANG S, TANG Z K, WONG K Y, et al.. High-quality interface in Al2O3/GaN/GaN/AlGaN/GaN MIS structures with in situ pre-gate plasma nitridation[J]. IEEE Electron. Dev. Lett., 2013, 34(12):1497-1499.
TANG Z K, JIANG Q M, LU Y Y, et al.. 600-V normally off SiNx/AlGaN/GaN MIS-HEMT with large gate swing and low current collapse[J]. IEEE Electron. Dev. Lett., 2013, 34(11):1373-1375.
HU X, KOUDYMOV A, SIMIN G, et al.. Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors[J]. Appl. Phys. Lett., 2001, 79(17):2832-2834.
WANG W F, DERLUYN J, GERMAIN M, et al.. Effect of surface passivation on two-dimensional electron gas carrier density in AlGaN/GaN structures[J]. Jpn. J. Appl. Phys., 2006, 45(8):L224-L226.
SHI J X, CHOI Y C, POPHRISTIC M, et al.. High breakdown voltage AlGaN/GaN heterojunction field effect transistors on sapphire[J]. Phys. Stat. Sol. C, 2008, 5(6):2013-2015.