WU Jia-qi, LI Fu-shan, NIE Chen etc. White Light-emitting Electrochemical Cells Based on Polyfluorene and Cationic Iridium Complexes[J]. Chinese Journal of Luminescence, 2016,37(5): 573-577
WU Jia-qi, LI Fu-shan, NIE Chen etc. White Light-emitting Electrochemical Cells Based on Polyfluorene and Cationic Iridium Complexes[J]. Chinese Journal of Luminescence, 2016,37(5): 573-577 DOI: 10.3788/fgxb20163705.0573.
White Light-emitting Electrochemical Cells Based on Polyfluorene and Cationic Iridium Complexes
Light-emitting electrochemical cells (LECs) have a crucial benefit in low cost fabrication processes in flexible and large area illumination panels
but the white light emission remains to be a problem. The fabrication of flexible yellow LECs based on a cationic iridium complex was reported in this paper
which showed yellow electroluminescence with high current efficiency of 11.6 cd/A at 6 V. White light-emitting electrochemical cells were fabricated by blending material mixing polyfluorene with cationic iridium complexes. The cells show white electroluminescence with CIE coordinates of (0.31
0.33)
which is close to standard white emission.
关键词
Keywords
references
PEI Q, YU G, ZHANG C, et al.. Polymer light-emitting electrochemical cells[J]. Science, 1995, 269(5227):1086-1088.
YANG Y, PEI Q. Voltage controlled two color light-emitting electrochemical cells[J]. Appl. Phys. Lett., 1996, 68(19):2708-2710.
SLINKER J, BERNARDS D, HOUSTON P L, et al.. Solid-state electroluminescent devices based on transition metal complexes[J]. Chem. Commun., 2003(19):2392-2399.
SLINKER J D, RIVNAY J, MOSKOWITZ J S, et al.. Electroluminescent devices from ionic transition metal complexes[J]. J. Mater. Chem., 2007, 17(29):2976-2988.
HU T, HE L, DUAN L, et al.. Solid-state light-emitting electrochemical cells based on ionic iridium (Ⅲ) complexes[J]. J. Mater. Chem., 2012, 22(10):4206-4215.
MATYBA P, YAMAGUCHI H, CHHOWALLA M, et al.. Flexible and metal-free light-emitting electrochemical cells based on graphene and PEDOT-PSS as the electrode materials[J]. Acs Nano, 2010, 5(1):574-580.
YANG Y, PEI Q. Efficient blue-green and white light-emitting electrochemical cells based on poly[9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl] [J]. J. Appl. Phys., 1997, 81(7):3294-3298.
SLINKER J D, GORODETSKY A A, LOWRY M S, et al.. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex[J]. J. Am. Chem. Soc., 2004, 126(9):2763-2767.
LOWRY M S, BERNHARD S. Synthetically tailored excited states:phosphorescent, cyclometalated iridium (Ⅲ) complexes and their applications[J]. Chem.-A Eur. J., 2006, 12(31):7970-7977.
HE L, DUAN L, QIAO J, et al.. Highly efficient blue-green and white light-emitting electrochemical cells based on a cationic Iridium complex with a bulky side group[J]. Chem. Mater., 2010, 22(11):3535-3542.
SU H C, CHEN H F, FANG F C, et al.. Solid-state white light-emitting electrochemical cells using iridium-based cationic transition metal complexes[J]. J. Am. Chem. Soc., 2008, 130(11):3413-3419.
SU H C, CHEN H F, SHEN Y C, et al.. Highly efficient double-doped solid-state white light-emitting electrochemical cells[J]. J. Mater. Chem., 2011, 21(26):9653-9660.
AKATSUKA T, ROLDN-CARMONA C, ORT E, et al.. Dynamically doped white light emitting tandem devices[J]. Adv. Mater., 2014, 26(5):770-774.
SU H C, CHENG C Y. Recent advances in solid-state white light-emitting electrochemical cells[J]. Israel J. Chem., 2014, 54(7):855-866.
TAMAYO A B, GARON S, SAJOTO T, et al.. Cationic bis-cyclometalated iridium (Ⅲ) diimine complexes and their use in efficient blue, green, and red electroluminescent devices[J]. Inorg. Chem., 2005, 44(24):8723-8732.
HE L, QIAO J, DUAN L, et al.. Toward highly efficient solid-state white light-emitting electrochemical cells:blue-green to red emitting cationic iridium complexes with imidazole-type ancillary ligands[J]. Adv. Funct. Mater., 2009, 19(18):2950-2960.
PARKER S T, SLINKER J D, LOWRY M S, et al.. Improved turn-on times of iridium electroluminescent devices by use of ionic liquids[J]. Chem. Mater., 2005, 17(12):3187-3190.
WANG Y M, TENG F, HOU Y B, et al.. Copper (Ⅰ) complex employed in organic light-emitting electrochemical cells:device and spectra shift[J]. Appl. Phys. Lett., 2005, 87(23):233512.
BOLINK H J, CAPPELLI L, CHEYLAN S, et al.. Origin of the large spectral shift in electroluminescence in a blue light emitting cationic iridium (Ⅲ) complex[J]. J. Mater. Chem., 2007, 17(48):5032-5041.
COSTA R D, ORTI E, BOLINK H J, et al.. Intramolecular -stacking in a phenylpyrazole-based iridium complex and its use in light-emitting electrochemical cells[J]. J. Am. Chem. Soc., 2010, 132(17):5978-5980.
HABRARD F, OUISSE T, STEPHAN O, et al.. Conjugated polymer/molten salt blends:the relationship between morphology and electrical aging[J]. J. Appl. Phys., 2004, 96(12):7219-7224.
KOSILKIN I V, MARTENS M S, MURPHY M P, et al.. Polymerizable ionic liquids for fixed-junction polymer light-emitting electrochemical cells[J]. Chem. Mater., 2010, 22(17):4838-4840.
NORELL BADER A J, ILKEVICH A A, KOSILKIN I V, et al.. Precise color tuning via hybrid light-emitting electrochemical cells[J]. Nano Lett., 2010, 11(2):461-465.
LEE C, KIM J J. Enhanced light out-coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends[J]. Small, 2013, 9(22):3858-3863.
SHAO Y, BAZAN G C, HEEGER A J. Long-lifetime polymer light-emitting electrochemical cells[J]. Adv. Mater., 2007, 19(3):365-370.
Single-emitting Layer White Organic Light-emitting Diodes with Blue HLCT Material of pCzAnN as Sensitizer Host
Achieving High-efficiency, High-color-purity Light-emitting Electrochemical Cells through TADF-sensitized Fluorescence Strategy
La3Si6N11:Ce3+ Luminescent Glass Ceramics Applicable to High-power Solid-state Lighting
Low Threshold Polymer Lasers Under Optical Pumping
Effects of Alkali Metal Ions on Upconversion of Rare Earth Doped Fluorides
Related Author
LI Xiaoxia
TIAN Tiantian
YANG Ruihao
XU Huixia
MIAO Yanqin
WANG Hua
CHEN Lisi
LAN Yanting
Related Institution
College of Textile Engineering, Taiyuan University of Technology
Zheda Institute of Advanced Materials and Chemical Engineering
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology
Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University
Key Laboratory of Eco-Functional Polymer Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University