LI Zhao-hui, DAI Jun, WU Chun-xia etc. Hybrid Structures of ZnO Nanorods/Carbon Fiber and Their Application on Ultraviolet Photodetector[J]. Chinese Journal of Luminescence, 2016,37(5): 543-547
LI Zhao-hui, DAI Jun, WU Chun-xia etc. Hybrid Structures of ZnO Nanorods/Carbon Fiber and Their Application on Ultraviolet Photodetector[J]. Chinese Journal of Luminescence, 2016,37(5): 543-547 DOI: 10.3788/fgxb20163705.0543.
Hybrid Structures of ZnO Nanorods/Carbon Fiber and Their Application on Ultraviolet Photodetector
Brush-like hierarchical ZnO nanostructures on carbon fiber was fabricated by RF magnetic sputtering method and hydrothermal growth. The hybrid structures showed high surface-to-volume ratio and better electrical conductivity. An individual carbon fiber coated ZnO nanorods was transferred to the Au interdigital electrodes to form an ultraviolet photodetector
and the spacing of the electrodes is 180m. Under the illumination of 325 nm UV light
the device shows a high photocurrent gain of 200
a good stability and the spectral responsivities. Furthermore
the mechanism for UV response is discussed.
关键词
Keywords
references
LIN Y, EHLERT G, SODANO H A. Increased interface strength in carbon fiber composites through a ZnO nanowire interphase[J]. Adv. Funct. Mater., 2009, 19(16):2654-2660.
BANERJEE D, JO S H, REN Z F. Enhanced field emission of ZnO nanowires[J]. Adv. Mater., 2004, 16(22):2028-2032.
LIAO Q L, MOHR M, ZHANG XH, et al.. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors[J]. Nanoscale, 2013, 5(24):12350-12355.
SKANDANI AA, MASGHOUNI N, CASE S W, et al.. Enhanced vibration damping of carbon fibers-ZnO nanorods hybrid composites[J]. Appl. Phys. Lett., 2012, 101(7):073111-1-4.
ZHANG F, NIU S, WANG Z L, et al.. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire[J]. Acs Nano, 2013, 7(5):4537-4544.
GUO W, XU C, WANG Z L, et al.. Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2012, 134(9):4437-4441.
UNALAN H E, WEI D, SUZUKI K, et al.. Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers[J]. Appl. Phys. Lett., 2008, 93(13):133116-1-3.
LIN D D, WU H, ZHANG W, et al.. Enhanced UV photoresponse from heterostructured Ag-ZnO nanowires[J]. Appl. Phys. Lett., 2009, 94(17):172103.
LIU X B, DU H, SUN X W, et al.. Visible-light hotoresponse in a hollow microtube-nanowire structure made of carbon-doped ZnO[J]. Cryst. Eng. Comm., 2012, 14(8):2886-2890
李超群,陈洪宇,张振中,等. 电极间距对ZnO基MSM紫外光电探测器性能的影响[J]. 发光学报, 2014, 35(10):1172-1175. LI C Q, CHEN H Y, ZHANG Z Z, et al.. Effect of electrode spacing on the properties of ZnO based MSM ultraviolet photodetector[J]. Chin. J. Lumin., 2014, 35(10):1172-1175. (in Chinese)
AHN S E, LEE J S, KIM H, et al.. Photoresponse of sol-gel-synthesized ZnO nanorods[J]. Appl. Phys. Lett., 2004, 84(24):5022-5024.
PARK J Y, YUN Y S, HONG Y S, et al.. Synthesis, electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO nanorods on GaN-buffered sapphire substrates[J]. Appl. Phys. Lett., 2005, 87(12):123108.
KIM M S, HAN J H, LEE D H, et al.. Laterally grown ZnO nanorod arrays on an obliquely deposited seed layer and its UV photocurrent response[J]. Microelectron. Eng., 2012, 97:130-133.
HUMAYUN Q, KASHIF M, HASHIM U, et al.. Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors[J]. Nnaoscale. Res. Lett., 2014, 9:29.
SINGH L T, SUGAVANESHWAR R P, NANDAK K. Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices[J]. Aip Adv., 2013, 3(8):082106-1-8.
JI L W, PENG S M, SU Y K, et al.. Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays[J]. Appl. Phys. Lett., 2009, 94(20):203106-1-3.
GUO D Y, SHAN C X, QU S N, et al.. Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films[J]. Sci. Rep., 2014, 4:7469.
DAI J, XU C X, XU X Y, et al.. Single ZnO microrod ultraviolet photodetector with high photocurrent gain[J]. Acs. Appl. Mater. Inter., 2013, 5:9344-9348.