CAI Li-e, ZHANG Bao-ping, ZHANG Jiang-yong etc. Fabrication and Characteristics of GaN-based Blue VCSEL[J]. Chinese Journal of Luminescence, 2016,37(4): 452-456
CAI Li-e, ZHANG Bao-ping, ZHANG Jiang-yong etc. Fabrication and Characteristics of GaN-based Blue VCSEL[J]. Chinese Journal of Luminescence, 2016,37(4): 452-456 DOI: 10.3788/fgxb20163704.0452.
Fabrication and Characteristics of GaN-based Blue VCSEL
利用金属有机物气相沉积技术(MOCVD)在(0001)蓝宝石衬底上生长了 GaN 基垂直腔面发射激光器(VCSEL) 的多量子阱腔层结构。X射线衍射测量显示该多量子阱具有良好周期结构和平整界面。运用键合及激光剥离技术将该外延片制作成 VCSEL
顶部和底部反射镜为极高反射率的介质膜分布布拉格反射镜 (DBR)。在室温、紫外脉冲激光的泵浦条件下
观察到了VCSEL明显的激射现象
峰值波长位于447.7 nm
半高宽为0.11 nm
自发辐射因子约为6.010
-2
阈值能量密度约为8.8 mJ/cm
2
。在大幅度降低制作难度的情况下
得到目前国际最好结果同样数量级的激射阈值。降低器件制作难度有利于制备的重复性
有利于器件的产品化。
Abstract
GaN-based multiple quantum wells (MQWs) were epitaxially grown on (0001)-oriented sapphire substrate by metal organic chemical vapor deposition (MOCVD) technique. X-ray diffraction measurements indicated that the MQWs had good periodic structure and smooth interface. By employing bonding and laser lift-off techniques
the MQW structure was sandwiched between two high reflectivity dielectric distributed Bragg reflectors (DBRs)
forming a vertical-cavity surface-emitting laser (VCSEL). Under optical pumping
the VCSEL achieved laser action at room temperature with a threshold pumping energy density of about 8.8 mJ/cm
2
. The laser emitted a blue light at 447.7 nm with a narrow linewidth of 0.11 nm
and had a high spontaneous emission factor of about 6.010
-2
.
关键词
Keywords
references
SOMEYA T, WERNER R, FORCHEL A, et al.. Room temperature lasing at blue wavelengths in gallium nitride microcavities [J]. Science, 1999, 285(5435):1905-1906.
SONG Y K, ZHOU H, DIAGNE M, et al.. A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser [J]. Appl. Phys. Lett., 2000, 76(13):1662-1664.
TAWARA T, GOTOH H, AKASAKA T, et al.. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors [J]. Appl. Phys. Lett., 2003, 83(5):830-832.
KAO CC, PENG Y C, YAO H H, et al.. Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector [J]. Appl. Phys. Lett., 2005, 87(8):081105.
FELTIN E, CHRISTMANN G, DORSAZ J, et al.. Blue lasing at room temperature in an optically pumped lattice-matched AlInN/GaN VCSEL structure [J]. Electron. Lett., 2007, 43(17):924-926.
CAI L E, ZHANG J Y, ZHANG B P, et al.. Blue-green optically pumped GaN-based vertical cavity surface emitting laser [J]. Electron. Lett., 2008, 44(16):972-974.
ZHANG J Y, CAI L E, ZHANG B P, et al.. Low threshold lasing of GaN-based vertical cavity surface emitting lasers with an asymmetric coupled quantum well active region [J]. Appl. Phys. Lett., 2008, 93(19):191118.
LU T C, KAO CC, KUO H C, et al.. CW lasing of current injection blue GaN-based vertical cavity surface emitting laser [J]. Appl. Phys. Lett., 2008, 92(14):141102-1-3.
HIGUCHI Y, OMAE K, Matsumura H, et al.. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection [J]. Appl. Phys. Express, 2008, 1(12):121102-1-3.
ONISHI T, IMAFUJI O, NAGAMATSU K, et al.. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature [J]. IEEE J. Quant. Electron., 2012, 48(9):1107-1112.
COSENDEY G, CASTIGLIA A, ROSSBACH G, et al.. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate [J]. Appl. Phys. Lett., 2012, 101(15):151113.
HOLDER C, SPECK J S, DENBAARS S P, et al.. Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers [J]. Appl. Phys. Express, 2012, 5(9):092104.
LIU W J, HU X L, YING L Y, et al.. Room temperature continuous wave lasing of electrically injected GaN-based vertical cavity surface emitting lasers [J]. Appl. Phys. Lett., 2014, 104(25):251116-1-4.
IZUMI S, FUUTAGAWA N, HAMAGUCHI T, et al.. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers fabricated using epitaxial lateral overgrowth [J]. Appl. Phys. Express, 2015, 8(6):062702.
CHU J T, LU T C, YOU M, et al.. Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers [J]. Appl. Phys. Lett., 2006, 89(12):121112-1-3.
BJORK G, YAMAMOTO Y. Analysis of semiconductormicrocavity lasers using rate equations [J]. IEEE J. Quant. Electron., 1991, 27(11):2386-2396.
HOROWICZ R J, HEITMANN H, KADOTA Y, et al.. GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode [J]. Appl. Phys. Lett., 1992, 61(4):393-395.
LIU W J, HU X L, YING L Y, et al.. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers [J]. Sci. Rep., 2015, 5:9600-1-7.