浏览全部资源
扫码关注微信
1. 陕西科技大学 理学院,陕西 西安,710021
2. 西安交通大学 陕西省信息光电子技术重点实验室,陕西 西安,710049
3. 中国科学院半导体研究所 半导体材料科学重点实验室 北京,100083
4. 西安科技大学 电气与控制工程学院,陕西 西安,710054
Received:21 December 2015,
Revised:18 January 2016,
Published:05 April 2016
移动端阅览
王进军, 王晓亮, 张景文等. 场板结终端对金刚石SBD内部电场分布及击穿特性的影响[J]. 发光学报, 2016,37(4): 432-438
WANG Jin-jun, WANG Xiao-liang, ZHANG Jing-wen etc. Influence of Field Plate Terminal on The Electric Field Distribution and Breakdown Characteristics of Diamond SBD[J]. Chinese Journal of Luminescence, 2016,37(4): 432-438
王进军, 王晓亮, 张景文等. 场板结终端对金刚石SBD内部电场分布及击穿特性的影响[J]. 发光学报, 2016,37(4): 432-438 DOI: 10.3788/fgxb20163704.0432.
WANG Jin-jun, WANG Xiao-liang, ZHANG Jing-wen etc. Influence of Field Plate Terminal on The Electric Field Distribution and Breakdown Characteristics of Diamond SBD[J]. Chinese Journal of Luminescence, 2016,37(4): 432-438 DOI: 10.3788/fgxb20163704.0432.
建立了场板结终端对金刚石肖特基势垒二极管(SBD)的数值模拟模型
采用Silvaco软件中的器件仿真工具ATLAS模拟了场板长度
L
、绝缘层厚度
T
OX
、衬底掺杂浓度
N
B
、场板结构形状对器件内部电场分布以及击穿电压的影响
并对结果进行了物理分析和解释。结果表明:当
T
OX
=0.4 m、
N
B
=10
15
cm
-3
、
L
在0~0.2 m范围内时
击穿电压随着
L
的增加而增加;
L
>
0.2 m后
击穿电压开始下降。当
L
=0.2 m、
N
B
=10
15
cm
-3
、
T
OX
在0.1~0.4 m范围内时
击穿电压随着
T
OX
的增加而增加;
T
OX
>
0.4 m后
击穿电压开始下降。当
L
=0.2 m、
T
OX
=0.4 m、
N
B
=10
15
cm
-3
时
器件的击穿电压达到最大的1 873 kV。与普通场板结构相比
采用台阶场板可以更加有效地提高器件的击穿电压。
Numerical simulation model of field plate termination diamond Schottky barrier diode(SBD) was established in this paper
the influence of the field plate length
L
insulating layer thickness
T
OX
substrate doping concentration
N
B
and the structure shape of the field plate on the electric field distribution inside the device and the influence of breakdown voltage of diamond SBD were numerical simulated by Silvaco device simulation tools ATLAS. The results of numerical simulation were analyzed and explained physically. The breakdown voltage increases with the increasing length of the field plate within the range of 0.0 to 0.2 m when
T
OX
=0.4 m and
N
B
=10
15
cm
-3
and decreases when
L
>
0.2 m. The breakdown voltage increases with the increasing of insulating layer thickness
T
OX
within the range of 0.1 to 0.4 m when
L
=0.2 m and
N
B
=10
15
cm
-3
and decreases when
T
OX
>
0.4 m. The breakdown voltage of the device reaches its maximum 1 873 kV when
L
=0.2 m
T
OX
=0.4 m
and
N
B
=10
15
cm
-3
. The steps field plate can effectively improve the breakdown voltage of the device
compared with the ordinary field plate structure.
JAYANT BALIGA B. Fundamentals of Power Semiconductor Devices [M]. New York: Springer, 2008:112-188.
CHOW T P, TYAGI R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices[J]. IEEE Trans. Electron. Dev., 1994, 41(8):1481-1483.
NAWAWI A, TSENG K J, RUSLI G A J, et al.. Design and optimization of planar mesa termination for diamond Schottky barrier diodes [J]. Diam. Relat. Mater., 2013, 36:51-57.
BLANK V D, BORMASHOV V S, TARELKIN S A, et al.. Power high-voltage and fast response Schottky barrier diamond diodes [J]. Diam. Relat. Mater., 2015, 57:32-36.
FAGGIO G, MESSINA G, SANTANGELO S, et al.. Raman scattering in boron-doped single-crystal diamond used to fabricate Schottky diode detectors [J]. J. Quant. Spectrosc. Radiat. Trans., 2012, 113(18):2476-2481.
MURET P, VOLPE P N, TRAN-THI T N, et al.. Schottky diode architectures on p-type diamond for fast switching, high forward current density and high breakdown field rectifiers [J]. Diam. Relat. Mater., 2011, 20(3):285-289.
ACHARD J, ISSAOUI R, TALLAIRE A, et al.. Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices? [J]. Phys. Stat. Sol. (a), 2012, 209(9):1651-1658.
UMEZAWA H, NAGASE M, KATO Y, et al.. Diamond vertical Schottky barrier diode with Al2O3 field plate [J]. Mater. Sci. Forum, 2012, 717-720:1319-1321.
IKEDA K, UMEZAWA H, TATSUMI N, et al.. Fabrication of a field plate structure for diamond Schottky barrier diodes [J]. Diam. Relat. Mater., 2009, 18(2-3):292-295.
KONE S, DING H, SCHNEIDER H, et al.. High performances CVD diamond Schottky barrier diode-Simulation and carrying out [C]. Proceedings of The 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 2009:1-8.
0
Views
191
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution