LI Xiong, XU Deng-hui, ZHAO Jia etc. Effect of Anode Buffer Layer Modification on The Performance of Polymer Solar cells[J]. Chinese Journal of Luminescence, 2016,37(3): 321-326
LI Xiong, XU Deng-hui, ZHAO Jia etc. Effect of Anode Buffer Layer Modification on The Performance of Polymer Solar cells[J]. Chinese Journal of Luminescence, 2016,37(3): 321-326 DOI: 10.3788/fgxb20163703.0321.
Effect of Anode Buffer Layer Modification on The Performance of Polymer Solar cells
In order to improve the performance of polymer solar cells
polyethylene glycol (PEG) was incorporated into PEDOT:PSS layer
and the effect of anode buffer layer modification on the performance of polymer solar cells was studied. First
the effect of PEG on the conductivity of PEDOT:PSS films was studied
and the results show that PEG interacts with PEDOT and PSS
and reorients the PEDOT polymer chains
which improves the conductivity of PEDOT:PSS layer significantly. PEDOT:PSS layer with 2%-4%(volume fraction) PEG has the optimized conductivity. Then the bulk heterojunction polymer solar cells based on PEG modified PEDOT:PSS anode buffer layer were prepared. It is found that PEG improves the short-circuit current density and fill factor obviously. The polymer solar cell with 2% PEG modified PEDOT:PSS layer gives the maximum power conversion efficiency
as compared with the control device without PEG
24.4% efficiency enhancement is achieved.
关键词
Keywords
references
SCHARBER M C, SARICIFTCI N S. Efficiency of bulk-heterojunction organic solar cells [J]. Prog. Polym. Sci., 2013, 38(12):1929-1940.
HE Z C, WU H B, CAO Y. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer [J]. Adv. Mater., 2014, 26(7):1006-1024.
BLOUIN N, MICHAUD A, LECLERCM. A low-bandgap poly (2, 7-Carbazole) derivative for use in high-performance solar cells [J]. Adv. Mater., 2007, 19(17):2295-2300.
HUO L J, ZHANG S Q, GUO X, et al.. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers [J]. Angew. Chem. Int. Ed., 2011, 50(41):9697-9702.
LU L Y, YU L P. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it [J]. Adv. Mater., 2014, 26(26):4413-4430.
KIM J Y, LEE K, COATES N E, et al.. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835):222-225.
AMERI T, KHORAM P, MIN J, et al.. Organic ternary solar cells: a review [J]. Adv. Mater., 2013, 25(31):4245-4266.
MORFA A J, ROWLEN K L, REILLYT H, et al.. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics [J]. Appl. Phys. Lett., 2008, 92(1):013504-1-3.
FUNG D D S, QIAO L F, CHOY W C H, et al.. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer [J]. J. Mater. Chem., 2011, 21(41):16349-16356.
STEIM R, CHOULIS S A, SCHILINSKY P, et al.. Interface modification for highly efficient organic photovoltaics [J]. Appl. Phys. Lett., 2008, 92(9):093303-1-3.
印寿根,杨利营,许新蕊,等. 利用阴极修饰层提高有机光伏电池的性能及稳定性 [J]. 发光学报, 2012, 33(3): 233-237. YIN S G, YANG L Y, XU X R, et al.. Enhancement of the performance and stability of polymer photovoltaic cells by cathode buffer layer [J]. Chin. J. Lumin., 2012, 33(3):233-237. (in Chinese)
ZACHER B, GANTZ J L, RICHARDSR E, et al.. Organic solar cells-at the interface [J]. J. Phys. Chem. Lett., 2013, 4(11):1949-1952.
YOU J, DOU L, YOSHIMURA K, et al.. A polymer tandem solar cell with 10.6% power conversion efficiency [J]. Nat. Commun., 2013, 4:1446.
KIM J Y, JUNG J H, LEE D E, et al.. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/ poly (4-styrenesulfonate) by a change of solvents [J]. Synth. Met., 2002, 123(2-3):311-316.
KO C J, LIN Y K, CHENF C, et al.. Modified buffer layers for polymer photovoltaic devices [J]. Appl. Phys. Lett., 2007, 90(6):063509-1-3.
TSAI T, CHANG H C, CHEN C H, et al.. Widely variable seebeck coefficient and enhanced thermoelectric power of PEDOT:PSS films by blending thermal decomposable ammonium formate [J]. Org. Electron., 2011, 12(12):2159-2164.
MENGISTIE D A, WANG P C, CHU C W. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells [J]. J. Mater. Chem. A, 2013, 1(34):9907-9915.
王铁军,齐英群,徐景坤,等. 聚乙二醇对PEDOT-PSS导电性能的影响 [J]. 科学通报, 2003, 48(19):2036-2037.WANG T J, QI Y Q, XU J K, et al.. Effect of addition of poly-(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid [J]. Chin. Sci. Bull., 2003, 48(19):2036-2037.
LANG U, MVLLER E, NAUJOKS N, et al.. Microscopical investigations of PEDOT:PSS thin films [J]. Adv. Funct. Mater., 2009, 19(8):1215-1220.
NA S I, WANG G, KIM S S, et al.. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells [J]. J. Mater. Chem., 2009, 19(47):9045-9053.
HU Z Y, ZHANG J J, HAO Z H, et al.. Influence of doped PEDOT:PSS on the performance of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(10):2763-2767.
XIE F X, CHOY W C H, WANG C C D, et al.. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers [J]. Appl. Phys. Lett., 2011, 99(15):153304-1-3.