XU Hong-yuan, ZHANG Jian-hua, LI Fu-shan. Synthesis and Optical Properties of CdTe:Eu Quantum Dots[J]. Chinese Journal of Luminescence, 2016,37(3): 305-309
XU Hong-yuan, ZHANG Jian-hua, LI Fu-shan. Synthesis and Optical Properties of CdTe:Eu Quantum Dots[J]. Chinese Journal of Luminescence, 2016,37(3): 305-309 DOI: 10.3788/fgxb20163703.0305.
Synthesis and Optical Properties of CdTe:Eu Quantum Dots
Using 1-octadecene as high-temperature reaction solvent
Eu-doped CdTe quantum dots were synthesized. The europium precursor was prepared by dissolving europium chloride into tributyl phosphate. Cadmium precursor solution was prepared by dissolving cadmium acetate into oleylamine
and Te precursor solution was prepared by dissolving tellurium powder into trioctylphosphine. CdTe and CdTe:Eu quantum dot were obtained at 200 ℃. The experiment results indicate that the fluorescence peaks of the quantum dots show obvious red shift with the increasing of europium content
but extra europium will lead to the decrease of fluorescence intensity.
关键词
Keywords
references
DILAG J, KOBUS H, ELLIS A V. Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection [J]. Forens. Sci. Int., 2009, 187(1-3):97-102.
YANG S S, REN C L, ZHANG Z Y, et al.. Aqueous synthesis of CdTe/CdSe core/shell quantum dots as pH-sensitive fluorescence probe for the determination of ascorbic acid [J]. J. Fluoresc., 2011, 21(3):1123-1129.
DAS B C, BATABYAL S K, PAL A J. A bit per particle: electrostatic assembly of CdSe quantum dots as memory elements [J]. Adv. Mater., 2007, 19(23):4172-4176.
ALDANA J, WANG Y A, PENG X G. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols [J]. J. Am. Chem. Soc., 2001, 123(36):8844-8850.
CHEN H N, ZHU L Q, LIU H C, et al.. ITO porous film-supported metal sulfide counter electrodes for high-performance quantum-dot-sensitized solar cells [J]. J. Phys. Chem. C, 2013, 117(8):3739-3746.
KAMAT P V, TVRDY K, BAKER D R, et al.. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells [J]. Chem. Rev., 2010, 110(11):6664-6688.
DAI X L, ZHANG Z X, JIN Y Z, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525):96-99.
MASHFORD B S, STEVENSON M, POPOVIC Z, et al.. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photon., 2013, 7(5):407-412.
PRADHAN N, PENG X G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry [J]. J. Am. Chem. Soc., 2007, 129(11):3339-3347.
LIU N, ZHOU W Z, XU L, et al.. Enhanced luminescence of ZnSe:Eu3+/ZnS core-shell quantum dots [J]. J. Non-Cryst. Solids, 2012, 358(17):2353-2356.
YANG P, LV M, XV D, et al.. The effect of Co2+ and Co3+ on photoluminescence characteristics of ZnS nanocrystallines [J]. J. Phys. Chem. Solids, 2001, 62(6):1181-1184.
CHEN H, LIU Y F, LU Y N, et al.. Microwave-assisted hydrothermal synthesis and luminescence properties of Eu3+ doped CdTe quantum dots [J]. Nano, 2014, 9(14):1450044.
DING S J, LIANG S, NAN F, et al.. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots [J]. Nanoscale, 2015, 7(5):1970-1976.
ZHANG F, SUN T T, ZHANG Y, et al.. Facile synthesis of functional gadolinium-doped CdTe quantum dots for tumor-targeted fluorescence and magnetic resonance dual-modality imaging [J]. J. Mater. Chem. B, 2014, 2(41):7201-7209.
LI L, YU L R, DING Y P, et al.. The synthesis of novel Mn-doped CdTe fluorescence probes and their application in the determination of luteolin [J]. Anal. Methods, 2015, 7(9):3855-3862.
ZHU Y S, CUI S B, CHEN X, et al.. Efficient energy transfer from inserted CdTe quantum dots to YVO4:Eu3+ inverse opals: a novel strategy to improve and expand visible excitation of rare earth ions [J]. Nanoscale, 2014, 6(14):8075-8083.