浏览全部资源
扫码关注微信
1. 中北大学 材料科学与工程学院,山西 太原,030051
2. 中北大学 机电工程学院,山西 太原,030051
Received:27 October 2015,
Revised:20 December 2015,
Published:05 March 2016
移动端阅览
夏凯, 李迎春, 李曦等. 不同制备条件对聚偏氟乙烯纳米线生长的影响[J]. 发光学报, 2016,37(3): 294-298
XIA Kai, LI Ying-chun, LI Xi etc. Effect of Different Preparation Conditions on The Growth of PVDF Nanowire[J]. Chinese Journal of Luminescence, 2016,37(3): 294-298
夏凯, 李迎春, 李曦等. 不同制备条件对聚偏氟乙烯纳米线生长的影响[J]. 发光学报, 2016,37(3): 294-298 DOI: 10.3788/fgxb20163703.0294.
XIA Kai, LI Ying-chun, LI Xi etc. Effect of Different Preparation Conditions on The Growth of PVDF Nanowire[J]. Chinese Journal of Luminescence, 2016,37(3): 294-298 DOI: 10.3788/fgxb20163703.0294.
为提高铁电聚合物聚偏氟乙烯(PVDF)的压电性能
利用纳米限域效应
采用模板直接浸润法
将多孔氧化铝(AAO)模板在不同浓度的PVDF的DMF溶液中自然浸润
并添加聚乙烯吡咯烷酮 (PVP)作为表面修饰剂
制备了一维材料PVDF纳米线。分别研究了浸润温度、溶液浓度及表面修饰剂等因素对PVDF纳米线生长过程的影响。通过FTIR、SEM、XRD等对样品的形貌结构及性能进行了表征
进一步讨论了AAO模板中PVDF纳米线的生长机制。结果表明:模板法生长的PVDF纳米线形貌主要受溶液浓度的影响
并且当浓度为0.10 g/mL时形貌较优
其平均长度为50 m
平均直径为180 nm
与AAO模板孔径尺寸相当;表面修饰剂PVP可在一定程度上防止纳米线团聚并且优化其尺寸均一性;AAO模板中生长的PVDF纳米线由于纳米限域效应优先向晶相结晶
并且在生长过程中PVDF并未参与任何化学反应。
PVDF-templated nanowires were prepared directly through a template infiltration method in the anodic porous alumina (AAO) membranes with the use of nano-confinement effect for the purpose of improving the piezoelectric properties of PVDF. PVDF was dissolved in N
N-dimethylformamide (DMF) in different concentration
and then different solutions were obtained. During this process
the polyvinylpyrrolidone (PVP) acted as a surface modifying agent. The effects of infiltration temperature
concentration of solution and surface modifying agent on the growth of PVDF nanowires were studied. In the meantime
the growth process and mechanism of PVDF nanowires were investigated by FTIR
SEM
XRD
and so on. The results show that the concentration of solution is the main factor that affects the morphology of the nanowires. Moreover
the optimal morphology is obtained when the concentration is 0.10 g/mL
with an average length of 50 m and an average diameter of 180 nm
equated with the pore size of AAO template. In a certain extent
PVP can prevent the agglomeration and optimize the size of the nanowires. Besides
the PVDF-templated nanowires preferentially crystallize to the -phase due to the nano-confinement effect
however
there is no chemical reaction during this process.
麦忠海,徐玉亭,谢琪,等. 聚偏氟乙烯相形成的研究进展 [J]. 工程塑料应用, 2014, 42(4):118-122. MAI Z H, XU Y T, XIE Q, et al.. Research advances in formation of phase of PVDF [J]. Eng. Plast. Appl., 2014, 42(4):118-122. (in Chinese)
TAKAHASHI Y, MATSUBARA Y, TADOKORO H. Crystal structure of form II of poly (vinylidene fluoride) [J]. Macromolecules, 1983, 16(10):1588-1592.
梁爽,郑茂梅,孙平,等. 聚偏氟乙烯结晶结构及其相制备方法的研究 [J]. 压电与声光, 2013, 35(5):719-723. LIANG S, ZHENG M M, SUN P, et al.. Researches on crystal structure and preparation methods of -phase polyvinylidene fluoride [J]. Piezoelectr. Acoustoopt., 2013, 35(5):719-723. (in Chinese)
ZHU G D, ZENG Z G, ZHANG L, et al.. Piezoelectricity in -phase PVDF crystals: a molecular simulation study [J]. Comput. Mater. Sci., 2008, 44(2):224-229.
LOVINGER A J. Ferroelectric polymers [J]. Science, 1983, 220(4602):1115-1121.
SAJKIEWICZ P, WASIAK A, GOC?OWSKI Z. Phase transitions during stretching of poly (vinylidene fluoride) [J]. Eur. Polym. J., 1999, 35(3):423-429.
KEPLER R G, ANDERSON R A. Ferroelectric polymers [J]. Adv. Phys., 1992, 41(1):1-57.
UEBERSCHLAG P. PVDF piezoelectric polymer [J]. Sens. Rev., 2001, 21(2):118-126.
ERDTMAN E, SATYANARAYANA K C, BOLTON K. Simulation of - and -PVDF melting mechanisms [J]. Polymer, 2012, 53(14):2919-2926.
CUI Z L, DRIOLI E, LEE Y M. Recent progress in fluoropolymers for membranes [J]. Prog. Polym. Sci., 2014, 39(1):164-198.
TIWARI V K, PRASAD A K, SINGH V, et al..Nanoparticle and process induced super toughened piezoelectric hybrid materials: the effect of stretching on filled system [J]. Macromolecules, 2013, 46(14):5595-5603.
BAE J H, CHANG S H. Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures [J]. Compos. Struct., 2015, 131:1090-1098.
GARAIN S, SINHA T K, ADHIKARY P, et al.. Self-poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator [J]. ACS Appl. Mater. Interf., 2015, 7(2):1298-1307.
CHOI S C, PARK J S, KIM J H. Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors [J]. Compos. Struct., 2006, 76(4):362-374.
KANIK M, AKTAS O, SEN H S, et al.. Spontaneous high piezoelectricity in poly (vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique [J]. ACS Nano, 2014, 8(9):9311-9323.
LEE B S, PARK B, YANG H S, et al.. Effects of substrate on piezoelectricity of electrospun poly (vinylidene fluoride)-nanofiber-based energy generators [J]. ACS Appl. Mater. Interf., 2014, 6(5):3520-3527.
RAMER N J, STISO K A. Structure and born effective charge determination for planar-zigzag -poly (vinylidene fluoride) using density-functional theory [J]. Polymer, 2005, 46(23):10431-10436.
CAUDA V, STASSI S, BEJTKA K, et al.. Nanoconfinement: an effective way to enhance PVDF piezoelectric properties [J]. ACS Appl. Mater. Interf., 2013, 5(13):6430-6437
CAUDA V, TORRE B, FALQUI A, et al.. Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires [J]. Chem. Mater., 2012, 24(21):4215-4221.
LI X, LIM Y F, YAO K, et al.. Ferroelectric poly (vinylidene fluoride) homopolymer nanotubes derived from solution in anodic alumina membrane template [J]. Chem. Mater., 2013, 25(4):524-529.
0
Views
163
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution