LU Hui, ZHANG Lian-ping, LUO Qun etc. Solvent and Concentration Optimization of Nano-ZnO Inks and Their Application in Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2016,37(3): 265-273
LU Hui, ZHANG Lian-ping, LUO Qun etc. Solvent and Concentration Optimization of Nano-ZnO Inks and Their Application in Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2016,37(3): 265-273 DOI: 10.3788/fgxb20163703.0265.
Solvent and Concentration Optimization of Nano-ZnO Inks and Their Application in Perovskite Solar Cells
ZnO nanoparticle has been used as cathode buffer layer (CBL) in organo-lead halide perovskite (PVSK) solar cells to improve device stability against oxygen and moisture. For solution processing procedure
solvents for dissolving ZnO has to be carefully optimized
since solvent penetration during the CBL deposition might cause the decomposition of the PVSK film. Aiming at the development of nano-ZnO inks for using in PVSK solar cells
the current work systematically investigate the dispersibility of nano-ZnO in various polar solvents
including acetone
methanol
ethanol
isopropanol
n-butanol
and a mixture solvent of methanol:
n
-buthanol (MeOH:
n
-BuOH
1:1
v/v
)
and the influence of such solvent on the UV-Vis absorption and crystalline properties of the underlying PVSK/PCBM film. PVSK solar cells with a device structure of ITO/PEDOT:PSS/PSS/PVSK/PCBM/ZnO/Al were then fabricated and tested. The optimized nano-ZnO ink is found to be MeOH:
n
-BuOH mixture solvent based (1:1
v/v
) with a concentration of 10 mgmL
-1
. The current work provides an important guideline for developing CBL inks for PVSK solar cells.
关键词
Keywords
references
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
YANG W S, NOH J H, JEON N J, et al.. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange [J]. Science, 2015, 348(6240):1234-1237.
GREEN M A, EMERY K, HISHIKAWA Y, et al.. Solar cell efficiency tables (version 46) [J]. Prog. Photovolt.: Res. Appl., 2015, 23(7):805-812.
LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J]. Science, 2012, 338(6107):643-647.
WANG X M, FANG Y L, HE L, et al. Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells [J]. Mater. Sci. Semicond. Process., 2014, 27:569-576.
LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501(7467):395-398.
XIONG J, YANG B C, WU R S, et al.. Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells [J]. Org. Electron., 2015, 24:106-112.
KIM B J, KIM D H, LEE Y Y, et al.. Highly efficient and bending durable perovskite solar cells: toward a wearable power source [J]. Energy Environ. Sci., 2015, 8(3):916-921.
YOU J B, HONG Z R, YANG Y M, et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014, 8(2):1674-1680.
BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al.. Semi-transparent perovskite solar cells for tandems with silicon and CIGS [J]. Energy Environ. Sci., 2015, 8(3):956-963.
SCHOONMAN J. Organic-inorganic lead halide perovskite solar cell materials: a possible stability problem [J]. Chem. Phys. Lett., 2015, 619:193-195.
BRYANT D, GREENWOOD P, TROUGHTON J, et al.. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells [J]. Adv. Mater., 2014, 26(44):7499-7504.
LI Z, KULKARNI S A, BOIX P P, et al.. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells [J]. ACS Nano, 2014, 8(7):6797-6804.
SHEIKH A D, BERA A, HAQUE M A, et al.. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells [J]. Sol. Energy Mater. Sol. Cells, 2015, 137:6-14.
SFYRI G, KUMAR C V, RAPTIS D, et al.. Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules [J]. Sol. Energy Mater. Sol. Cells, 2015, 134:60-63.
DOCAMPO P, BALL J M, DARWICH B M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nat. Commun., 2013, 4:2761.
CHUEH C C, LI C Z, JEN A K Y. Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells [J]. Energy Environ. Sci., 2015, 8(4):1160-1189.
NOH J H, IM S H, HEO J H, et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Lett., 2013, 13(4):1764-1769.
PATHAK S K, ABATE A, RUCKDESCHEL P, et al.. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2 [J]. Adv. Funct. Mater., 2014, 24(38):6046-6055.
薛启帆,孙辰,胡志诚,等. 钙钛矿太阳能电池研究进展: 薄膜形貌控制与界面工程 [J]. 化学学报, 2015, 73(3): 179-192. XUE Q F, SUN C, HU Z C, et al.. Recent advances in perovskite solar cells: morphology control and interfacial engineering [J]. Acta Chim. Sinica, 2015, 73(3):179-192. (in Chinese)
LIU X D, LEI M, ZHOU Y, et al.. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers [J]. Appl. Phys. Lett., 2015, 107(6):063901.
GUO X D, DONG H P, LI W Z, et al.. Multifunctional MgO layer in perovskite solar cells [J]. ChemPhysChem., 2015, 16(8):1727-1732.
ZHANG L Q, ZHANG X W, YIN Z G, et al.. Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process [J]. J. Mater. Chem. A, 2015, 3(23):12133-12138.
XUE Q F, HU Z C, LIU J, et al.. Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer [J]. J. Mater. Chem. A, 2014, 2(46):19598-19603.
BEEK W J E, WIENK M M, KEMERINK M, et al.. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J]. J. Phys. Chem. B, 2005, 109(19):9505-9516.
GUO F, AZIMI H, HOU Y, et al.. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes [J]. Nanoscale, 2015, 7(5):1642-1649.
XIA F, WU Q L, ZHOU P C, et al.. Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer [J]. ACS Appl. Mater. Interf., 2015, 7(24):13659-13665.
Bimolecularly Passivated Buried Interface for Highly Efficient Perovskite Solar Cells
Solvent Regulation Strategy for Ambient Preparation of Perovskite Solar Cells
Multifunctional Orotic Acid Passivation for Efficient and Stable Perovskite Solar Cells
Efficient and Stable Perovskite Solar Cells Achieved by Subsurface Interface Modification
Progress on Single-crystal Perovskite Solar Cells
Related Author
WEN Chao
CHEN Qianyu
LU Yingjie
LIU Jiapeng
YAO Guangping
WANG Lidan
SU Zisheng
CHENG Junjie
Related Institution
College of Photonic and Electronic Engineering, Fujian Normal University
College of Chemical Engineering and Material, Quanzhou Normal University
College of Physics and Information Engineering, Quanzhou Normal University
Institute for Photonics Technology, Fujian Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Fujian Provincial Collaborative Innovation Center for Ultra-Precision Optical Engineering and Applications, Quanzhou Normal University
School of Advanced Manufacturing, Fuzhou University