浏览全部资源
扫码关注微信
1. 山东科技大学 机械电子工程学院,山东 青岛,266590
2. 天津大学 精密仪器与光电子工程学院 天津,300072
3. 光电信息技术教育部重点实验室(天津大学) 天津,300072
Received:11 November 2015,
Revised:12 December 2015,
Published:10 February 2016
移动端阅览
曹小龙, 车永莉, 姚建铨. 双波泵浦非对称量子阱的光学整流效应[J]. 发光学报, 2016,37(2): 224-229
CAO Xiao-long, CHE Yong-li, YAO Jian-quan. Nonlinear Optical Rectification of Asymmetric Quantum Well Based on Dual Pump[J]. Chinese Journal of Luminescence, 2016,37(2): 224-229
曹小龙, 车永莉, 姚建铨. 双波泵浦非对称量子阱的光学整流效应[J]. 发光学报, 2016,37(2): 224-229 DOI: 10.3788/fgxb20163702.0224.
CAO Xiao-long, CHE Yong-li, YAO Jian-quan. Nonlinear Optical Rectification of Asymmetric Quantum Well Based on Dual Pump[J]. Chinese Journal of Luminescence, 2016,37(2): 224-229 DOI: 10.3788/fgxb20163702.0224.
为了实现基于光整流方式的室温下宽调谐高效率太赫兹源
设计了一种适于双波长CO
2
激光器共振子带跃迁泵浦的双阱嵌套形非对称量子阱结构
结构组分为Al
0.5
Ga
0.5
As/GaAs/Al
0.2
Ga
0.8
As
采用密度矩阵及迭代方法计算了其二阶非线性光整流系数
o
(2)
表达式
在导带为抛物线形和非抛物线形两种条件下对
o
(2)
进行对比研究。计算结果表明
其偶极跃迁矩阵元随量子阱总阱宽的增大而逐渐减小。当固定量子阱总阱宽及其中一束泵浦光波长不变时
o
(2)
随着另一束泵浦光波长的增加
呈现出先增大后减小的变化趋势。当深阱为7 nm、总阱宽为23 nm、两束泵浦光相等为10.64 m时
o
(2)
达到最大值5.92510
-6
m/V;随着总阱宽的增大
o
(2)
曲线呈现"红移"现象
其原因为量子限制效应导致了不同阱宽条件下的量子阱能级值差不同
从而造成满足泵浦光光子能量与能级差共振条件的变化。导带为抛物线形和非抛物线形两种条件下的
o
(2)
的最大值对应泵浦光波长基本相同
o
(2)
数值上的差异主要由跃迁矩阵元的不同导致。
Based on excitation from a dual-wavelength CO
2
laser
the optical rectification (OR) in a multiple asymmetric quantum well (AQW) was theoretically investigated by using the compact density matrix approach and the iterative method. The numerical results for the typical Al
0.5
Ga
0.5
As/GaAs/Al
0.2
Ga
0.8
As material show that the dipole matrix element decreases with the increasing well width of the AQW. Moreover
the optical rectification coefficient depends sensitively on two pump light wavelengths and well width of the AQW. The physical origin of this shift in optical rectification curve is the quantum confinement effect in the AQW system which causes the separation of energy levels and the changes in resonant condition. For an AQW of 7 nm deep well-width and 23 nm shallow well-width
the maximum of optical rectification coefficient for the AQW is 5.92510
-6
m/V when the two pump wavelengths are all 10.64 m. The characteristics of optical rectification are also analyzed on parabolic and non-parabolic energy-band conditions in detail.
张开春,刘盛纲. 周期极化铌酸锂中光整流THz波辐射 [J]. 物理学报, 2007, 56(9):5258-5262. ZHANG K C, LIU S G. THz wave radiation in periodically poled lithium niobate during on optical rectification [J]. Acta Phys. Sinica, 2007, 56(9):5258-5262. (in Chinese)
胡晓堃,李江,李贤,等. 太赫兹波发射晶体的亚波长微棱锥增透结构的设计与实验研究 [J]. 物理学报, 2013, 62(6):060701-1-6. HU X K, LI J, LI X, et al.. Theoretical design and experiment study of sub-wavelength antireflective micropyramid structures on THz emitters [J]. Acta Phys. Sinica, 2013, 62(6):060701-1-6. (in Chinese)
BASS M, FRANKEN P A, WARD J F, et al.. Optical rectification [J]. Phys. Rev. Lett., 1962, 9(11):446-448.
YANG K H, RICHARDS P L, SHEN Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3 [J]. Appl. Phys. Lett., 1971, 19(9):320-323.
SHEN Y R. Far-infrared generation by optical mixing [J]. Prog. Quant. Electron., 1976, 4:207-232.
FORK R L, GREENE B I, SHANK C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J]. Appl. Phys. Lett., 1981, 38(9):671-672.
ZHANG X C, MA X F, JIN Y, et al.. Terahertz optical rectification from a nonlinear organic crystal [J]. Appl. Phys. Lett., 1992, 61(26):3080-3082.
KARABULUT I, SAFAK H, TOMAK M. Nonlinear optical rectification in asymmetrical semiparabolic quantum wells [J]. Solid State Commun., 2005, 135(11-12):735-738.
BAEHR-JONES T, HOCHBERG M, SOREF R, et al.. Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides [J]. J. Opt. Soc. Am. B, 2008, 25(2):261-268.
BECK M, SCHFER H, KLATT G, et al.. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna [J]. Opt. Express, 2010, 18(9):9251-9257.
RAMAKRISHNAN G, KUMAR N, PLANKEN P C M, et al.. Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer [J]. Opt. Express, 2012, 20(4):4067-4073.
VICARIO C, MONOSZLAI B, HAURI C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal [J]. Phys. Rev. Lett., 2014, 112(21):213901.
CAO X L, YAO J Q, ZHU N N, et al.. Design of GaAs/AlxGa1-xAs asymmetric quantum wells for THz-wave by difference frequency generation [J]. Optoelectron. Lett., 2012, 8(3):229-232.
HIROSHIMA T, LANG R. Effect of conduction-band nonparabolicity on quantized energy levels of a quantum well [J]. Appl. Phys. Lett.,1986, 49(8):456-457.
MILANOVI? V, RADOVANOVI? J, RAMOVI? S. Influence of nonparabolicity on boundary conditions in semiconductor quantum wells [J]. Phys. Lett. A, 2009, 373(34):3071-3074.
KUHN K J, IYENGAR G U, YEE S. Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1-xAs/GaAs/AlxGa1-xAs quantum wells [J]. J. Appl. Phys., 1991, 70(9):5010-5017.
AHN D, CHUANG S L. Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field [J]. IEEE J. Quant. Electron., 1987, 23(12):2196-2204.
0
Views
100
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution