SU Shi-chen, PEI Lei-lei, ZHANG Hong-yan etc. Simulation and Design of High Efficiency InGaN/ AlInGaN Based Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2016,37(2): 208-212
SU Shi-chen, PEI Lei-lei, ZHANG Hong-yan etc. Simulation and Design of High Efficiency InGaN/ AlInGaN Based Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2016,37(2): 208-212 DOI: 10.3788/fgxb20163702.0208.
Simulation and Design of High Efficiency InGaN/ AlInGaN Based Light-emitting Diodes
N /AlInGaN量子阱中的载流子浓度、有源层的辐射复合率、电流特性曲线和内量子效率等方面都优于InGaN/GaN基LED。无应变AlInGaN垒层代替传统的GaN垒层后
能够得到高效的发光二极管
并且大电流注入下的"效率滚降"问题得到改善。
Abstract
InGaN-based LEDs with InGaN/AlInGaN and InGaN/GaN multiple quantum wells (MQWs) were theoretically studied and compared by using the Advanced Physical Models of Semiconductor Devices (APSYS) simulation program
respectively. The carrier concentrations in quantum wells
radiative recombination rate in active region
light-current performance curves
and the internal quantum efficiency were investigated. The simulation results show that higher efficiency realized in the strain-free AlInGaN barrier instead of GaN.
关键词
Keywords
references
KOIKE M, SHIBATA N, KATO H, et al.. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications [J]. IEEE J. Sel. Top. Quant. Electron., 2002, 8(2):271-277.
SEBITOSI A B, PILLAY P. New technologies for rural lighting in developing countries: white LEDs [J]. IEEE Trans. Energy Convers., 2007, 22(3):674-679.
CHEN R S, WANG W C, CHAN C H, et al.. Photoconduction efficiencies of metal oxide semiconductor nanowires: the material's inherent properties [J]. Appl. Phys. Lett., 2013, 103(22):223107-1-3.
XING B, CAO W Y, DU W M. Temperature-dependent PL of InGaN/GaN multiple quantum wells with variable content of In [J]. Chin. J. Lumin., 2010, 31(6):864-869. (in Chinese)
LIN W, LI S P, KANG J Y. Micro characteristics of InGaN/GaN quantum wells [J]. Chin. J. Lumin., 2007, 28(1):99-103. (in Chinese)
WITZIGMANN B, LAINO V, LUISIER M, et al.. Microscopic analysis of optical gain in InGaN/GaN quantum wells [J]. Appl. Phys. Lett., 2006, 88(2):021104-1-3.
WANG Y J, XU S J, LI Q, et al.. Band gap renormalization and carrier localization effects in InGaN/GaN quantum-wells light emitting diodes with Si doped barriers [J]. Appl. Phys. Lett., 2006, 88(4):041903-1-3.
MARONA L, WISNIEWSKI P, PRYSTAWKO P, et al.. Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals [J]. Appl. Phys. Lett., 2006, 88(20):201111-1-3.
CABALU J S, THOMIDIS C, MOUSTAKAS T D, et al.. Enhanced internal quantum efficiency and light extraction efficiency from textured GaN/AlGaN quantum wells grown by molecular beam epitaxy [J]. Appl. Phys. Lett., 2006, 99(6):064904-1-3.
DAI Q, SCHUBERT M F, KIM M H, et al.. Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities [J]. Appl. Phys. Lett., 2009, 94(11):111109-1-3.
KNAUER A, WENZEL H, KOLBE T, et al.. Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes [J]. Appl. Phys. Lett., 2008, 92(19):191912-1-3.
SCHUBERT M F, XU J R, KIM J K, et al.. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop [J]. Appl. Phys. Lett., 2008, 93(4):041102-1-3.
CHENG L W, WU S D, XIA C Q, et al.. Efficiency droop improvement in InGaN light-emitting diodes with graded InGaN barriers of increasing indium composition [J]. J. Appl. Phys., 2015, 118(10):103103-1-5.
LIN Y, ZHANG Y, LIU Z Q, et al.. Spatially resolved study of quantum efficiency droop in InGaN light-emitting diodes [J]. Appl. Phys. Lett., 2012, 101(25):252103-1-5.
ZHOU K, IKEDA M, LIU J P, et al.. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes [J]. Appl. Phys. Lett., 2014, 105(17):173510-1-3.
NAM K B, LI J, KIM K H, et al.. Growth and deep ultraviolet picosecond time-resolved photoluminescence studies of AlN/GaN multiple quantum wells [J]. Appl. Phys. Lett., 2001, 78(23):3690-3692.
WANG T, LIU Y H, LEE Y B, et al.. 1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate [J]. Appl. Phys. Lett., 2002, 81(14):2508-2510.
CHITNIS A, KUMAR A, SHATALOV M, et al.. High-quality p-n junctions with quaternary AlInGaN/InGaN quantum wells [J]. Appl. Phys. Lett., 2000, 77(23):3800-3802.
ZHANG J P, YANG J, SIMIN G, et al.. Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers [J]. Appl. Phys. Lett., 2000, 77(17):2668-2670.
KYONO T, HIRAYAMA H, AKITA K, et al.. Effects of In composition on ultraviolet emission efficiency in quaternary InAlGaN light-emitting diodes on freestanding GaN substrates and sapphire substrates [J]. J. Appl. Phys., 2005, 98(11):113514-1-3.
LU LW, SU S C, LING C C, et al.. Conduction band offset of InGaN/AlInGaN quantum wells studied by deep level transient spectroscopic technique [J]. Appl. Phys. Express, 2012, 5(9):091001-1-3.