LI Jian-feng, ZHAO Chuang, ZHANG Heng etc. Enhancement of The Photovoltaic Performance of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cells by Using Polyvinylpyrrolidone Additive[J]. Chinese Journal of Luminescence, 2016,37(1): 56-62
LI Jian-feng, ZHAO Chuang, ZHANG Heng etc. Enhancement of The Photovoltaic Performance of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cells by Using Polyvinylpyrrolidone Additive[J]. Chinese Journal of Luminescence, 2016,37(1): 56-62 DOI: 10.3788/fgxb20163701.0056.
Enhancement of The Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells by Using Polyvinylpyrrolidone Additive
We demonstrate a new one-step solution approach to prepare perovskite CH
3
NH
3
PbI
3
films by adding polyvinylpyrrolidone (PVP) to the standard CH
3
NH
3
PbI
3
precursor solution. The film morphologies
crystallinities
and optical properties of CH
3
NH
3
PbI
3
perovskite layers are carefully studied by SEM
XRD
and UV-Vis. The results reveal that the perovskite film properties can be manipulated by incorporating a small amount of PVP. The absorbance of the film with PVP additive is significantly higher than the pristine film and the absorption peak is red shift by 20 nm
indicating the perovskite film with additive possessing better crystal structures. The use of PVP strongly affects the crystallization process of forming pure CH
3
NH
3
PbI
3
and helps the formation of smooth film
leading not only to enhanced crystallization of CH
3
NH
3
PbI
3
but also to significantly improved coverage of CH
3
NH
3
PbI
3
on a planar substrate. The optimized power conversion efficiency (PCE) of CH
3
NH
3
PbI
3
solar cells improved from 1.30% to 8.38% for the planar cell structure after the addition of 1% mass fraction of PVP. These results suggest that this new one-step solution approach is promising for controlling CH
3
NH
3
PbI
3
growth to achieve high-performance perovskite solar cells.
关键词
Keywords
references
NOH J H, IM S H, HEO J H, et al.. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells [J]. Nano Lett., 2013, 13:1764-1769.
HEO J H, IM S H, NOH J H, et al.. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors [J]. Nat. Photon., 2013, 7:486-491.
STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342:341-344.
XING G, MATHEWS N, SUN S, et al.. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342:344-347.
Jeng J Y, Chiang Y F, Lee M H, et al.. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells [J]. Adv. Mater., 2013, 25:3727-3732.
SEO J, PARK S, KIM Y C, et al.. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells [J]. Energy Environ. Sci., 2014, 7:2642-2646.
SUN S, SALIM T, MATHEWS N, et al.. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells [J]. Energy Environ. Sci., 2014, 7:399-407.
EPERON G E, BURLAKOV V M, DOCAMPO P, et al.. morphological control for high performance, solution-processed planar heterojunction perovskite solar cells [J]. Adv. Funct. Mater., 2013, 24:151-157.
DOCAMPO P, BALL J M, DARWICH M, et al.. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nat. Commun., 2013, 4:2761-1-6.
CONINGS B, BAETEN L, DOBBELAERE C D, et al.. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach [J]. Adv. Mater., 2014, 26:2041-2046.
LIANG P W, LIAO C Y, CHUEHC C, et al.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells [J]. Adv. Mater., 2014, 26:3748-3754.
SONG X, WANG W, SUN P, et al.. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells [J]. Appl. Phys. Lett., 2015, 106:033901-1-5.
CHANG C Y, CHU C Y, HUANG Y C, et al.. Tuning perovskite morphology by polymer additive for high efficiency solar cell [J]. ACS Appl. Mater. Interf., 2015, 7:4955-4961.
KIM H S, LEE C R, IM J H, et al.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Sci. Rep., 2012, 2:591-1-7.
ZUO C, DING L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive [J]. Nanoscale, 2014, 6:9935-9938.
WANG Q, DONG Q, XIAO Z, et al.. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process [J]. Energy Environ. Sci., 2014, 7:2359-2365.
HOU F, SU Z, JIN F, et al.. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer [J]. Nanoscale, 2015, 7:427-9432.
EPERON G E, BURLAKOV V M, DOCAMPO P, et al.. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells [J]. Adv. Funct. Mater., 2014, 24:151-157.