NONG Ming-tao, MIAO Zhen-lin, LIANG Zhi-yong etc. Effect of AlN Buffer Layer Prepared by Reactive Magnetron Sputtering on GaN-based LEDs[J]. Chinese Journal of Luminescence, 2015,36(12): 1452-1457
NONG Ming-tao, MIAO Zhen-lin, LIANG Zhi-yong etc. Effect of AlN Buffer Layer Prepared by Reactive Magnetron Sputtering on GaN-based LEDs[J]. Chinese Journal of Luminescence, 2015,36(12): 1452-1457 DOI: 10.3788/fgxb20153612.1452.
Effect of AlN Buffer Layer Prepared by Reactive Magnetron Sputtering on GaN-based LEDs
AlN films were prepared on patterned sapphire substrates (PSS) by direct-current reactive magnetron sputtering (RMS) and used as buffer layers. The crystal quality and optical properties of GaN films grown by metal-organic chemical vapor deposition (MOCVD) with AlN buffer layers were investigated. Compared with conventional low temperature GaN buffer layers
the RMS AlN buffer layers have smoother and smaller nucleation islands
which benefits the lateral growth and the coalesce of three-dimensional GaN islands. It is found that GaN-based LEDs with RMS AlN buffer layers have higher light output power
lower electric leakage and stronger electrostatic discharge(ESD) characteristic owning to the lower threading dislocation density (TDD).
关键词
Keywords
references
Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379):956-961.
Chen Y, Wang W X, Li Y, et al. High quality GaN layers grown on SiC substrates with AlN buffers by metal organic chemical vapor deposition [J]. Chin. J. Lumin.(发光学报), 2011, 32(9):896-901 (in Chinese).
Wang X L, Wang W X, Jiang Y, et al. Luminescent performances of green InGaN/ GaN MQW LED employing superlattices strain adjusting structures [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1152-1158 (in Chinese).
Skierbiszewski C, Siekacz M, Turski H, et al. AlGaN-free laser diodes by plasma-assisted molecular beam epitaxy [J]. Appl. Phys. Express, 2012, 5(2):022104-1-3.
Chen X, Xing Y H, Han J, et al. Influence of Al composition on electrical and structural properties of Al<em>xGa1-x N/AlN/GaN HEMT materials grown by MOCVD [J]. Chin. J. Lumin.(发光学报), 2013, 34(12):1646-1650 (in Chinese).
Chen W C, Tang H L, Luo P, et al. Research progress of substrate materials used for GaN-based light emitting diodes [J]. Acta Phys. Sinica (物理学报), 2014, 63(6):8103-8103 (in Chinese).
Han N, Park Y J, Han M, et al. Threading dislocation reduction in epitaxial GaN using V-groove patterned sapphire substrate with embedded silica nanospheres [J]. Mater. Lett., 2014, 123:97-100.
Huang H M, Yang G, Wang H, et al. Improvement of GaN thin-film quality grown on patterned sapphire substrate by high-temperature pre-growth treatment [J]. Chin. J. Lumin.(发光学报), 2014, 35(8):980-985 (in Chinese).
Nakamura S. GaN growth using GaN buffer layer [J]. Jpn. J. Appl. Phys. B, 1991, 30:1705-1707.
Shin H Y, Kwon S K, Chang Y I, et al. Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate [J]. J. Cryst. Growth, 2009, 311(17):4167-4170.
Huang X H, Liu J P, Kong J J, et al. High-efficiency InGaN-based LEDs grown on patterned sapphire substrates [J]. Opt. Express, 2011, S4:A949-A955.
Kim T H, Ru H, Noh Y K, et al. Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study [J]. J. Appl. Phys., 2010, 107(6):063501-1-4.
Sugahara T, Hao M, Wang T, et al. Role of dislocation in InGaN phase separation. [J]. Jpn. J. Appl. Phys., 1998, 37:L1195-L1195.
Guo R H, Lu T P, Jia Z G, et al. Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film [J]. Acta Phys. Sinica (物理学报), 2015, 64(12):127305-1-5 (in Chinese).
Yi M S, Lee H H, Kim D J, et al. Effects of growth temperature on GaN nucleation layers [J]. Appl. Phys. Lett., 1999, 75(15):2187-2189.
Doverspike K, Rowland L B, Gaskill D K, et al. The effect of GaN and AlN buffer layers on GaN film properties grown on both c-plane and a-plane sapphire [J]. J. Electron. Mater., 1995, 24:269-273.
Yang T, Uchida K, Mishima T, et al. Control of initial nucleation by reducing the Ⅴ/Ⅲ ratio during the early stages of GaN growth [J]. Phys. Stat. Sol.(a), 2000, 180:45-50.
Kim D J, Moon Y T, Ahn K S, et al. In situ normal incidence reflectance study on the effect of growth rate of nucleation layer on GaN by metal-organic chemical vapor deposition [J]. J. Vac. Sci. Technol. B, 2000, 18:140-143.
Wang L, Wang L, Ren F, et al. GaN grown on AlN/sapphire templates [J]. Acta Phys. Sinica (物理学报), 2010, 59(11):8021-8025 (in Chinese).
Lee J H, Lee D Y, Oh B W, et al. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate [J]. IEEE Trans. Electron. Dev., 2010, 57(1):157-163.
Liang M, Wang G H, Li H J, et al. Low threading dislocation density in GaN films grown on patterned sapphire substrates [J]. J. Semicond.(半导体学报), 2012, 33(11):113002-1-5 (in English).
Kang D H, Song J C, Shim B Y, et al. Characteristic comparison of GaN grown on patterned sapphire substrates following growth time [J]. Jpn. J. Appl. Phys., 2007, 46(4B):2563-2566.
Kong J, Feng M X, Cai J, et al. GaN grown on nano-patterned sapphire substrates [J]. J. Semicond.(半导体学报), 2015, 36(4): 043003-1-5 (in English).
Le L C, Zhao D G, Jiang D S, et al. Carriers capturing of V-defect and its effect on leakage current and electroluminescence in InGaN-based light-emitting diodes [J]. Appl. Phys. Lett., 2012, 101(25):252110-1-4.