ZHANG Hao, DONG Li-fang, GAO Xing etc. Investigation on The Plasma Parameters of The Fence Pattern in Dielectric Barrier Discharge[J]. Chinese Journal of Luminescence, 2015,36(12): 1440-1444
ZHANG Hao, DONG Li-fang, GAO Xing etc. Investigation on The Plasma Parameters of The Fence Pattern in Dielectric Barrier Discharge[J]. Chinese Journal of Luminescence, 2015,36(12): 1440-1444 DOI: 10.3788/fgxb20153612.1440.
Investigation on The Plasma Parameters of The Fence Pattern in Dielectric Barrier Discharge
The fence pattern that consists of volume discharges (VDs) and surface discharges (SDs) is observed by using the dielectric barrier discharge device with two water electrodes. The VDs uniformly distribute along the slit
and SDs are perpendicular to the slit and own two kinds of intensity. The short-exposed photograph is obtained by a high speed video camera. The plasma parameters of fence pattern are investigated by spectrograph. The emission spectra of the N
2
second positive band(C
3
u
B
3
g
)is collected
and the molecule vibrational temperature is calculated by the emission intensities. Furthermore
the width of Ar Ⅰ 696.5 nm is used to estimate the electron density. The results show that the volume discharges with strong surface discharges have higher molecule vibrational temperature and higher electron density than those with less surface discharge. Besides
along the surface discharge direction
surface discharge's molecule vibrational temperature and the electron density gradually decrease. The unequivalent distribution of the wall charges contributes to the formation of fence pattern.
关键词
Keywords
references
Xu X J. Dielectric barrier discharge-properties and applications [J]. Thin Solid Films, 2001, 390(2):237-242.
Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges [J]. IEEE Trans. Plasma Sci., 2003, 30(4):1400-1408.
Meunier J, Belenguer P, Boeuf J P. Numerical model of an ac plasma display panel cell in neon-xenon mixtures [J]. Appl. Phys., 1995, 78(2):731-745.
Park H D, Dhali S K. Generation of atmospheric pressure plasma with a dual-chamber discharge [J]. Appl. Phys. Lett., 2000, 7(14):2112-2114.
Kuzumoto M, Ogawa S, Tanaka M, et al. Fast axial flow CO2 laser excited by silent discharge [J]. IEEE J. Quant. Electron., 1990, 26(6):1130-1134.
Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasma [J]. IEEE Trans. Plasma Sci,, 1991, 19(2):309-323.
Takaki K, Fujiwara T. Multipoint barrier discharge process for removal of NO<em>x from diesel engine exhaust [J]. IEEE Trans. Plasma Sci., 2001, 29(3):518-523.
Kogelschatz U, Eliasson B, Egli W. From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges [J]. Pure Appl. Chem., 1999, 71(10):1819-1828.
Sinclair J, Walhout M. Dielectric-barrier discharges in two-dimensional lattice potentials [J]. Phys. Rev. Lett., 2012, 108(3):035001-1-4.
Bernecker B, Callegari T, Blanco S, et al. Hexagonal and honeycomb structures in dielectric barrier discharges [J]. Eur. Phys. J. Appl. Phys., 2009, 47(2):2808-2811.
Dong L F, Fan W L, He Y F, et al. Square superlattice pattern in dielectric barrier discharge [J]. Phys. Rev. E, 2006, 73(6):066206-1-4.
Zhang H, Dong L F, Zhao L H, et al. The mutual influence between the adjacent surface discharges in a dielectric barrier discharge [J]. J. Hebei Univ.(河北大学学报), 2015, 35(2):127-130 (in Chinese).