RONG Jia-min, XING En-bo, ZHAO Shuai etc. Modeling of 2 μm GaSb Based Bragg Reflection Waveguide Lasers with Ultra-low Vertical Divergence[J]. Chinese Journal of Luminescence, 2015,36(12): 1434-1439
RONG Jia-min, XING En-bo, ZHAO Shuai etc. Modeling of 2 μm GaSb Based Bragg Reflection Waveguide Lasers with Ultra-low Vertical Divergence[J]. Chinese Journal of Luminescence, 2015,36(12): 1434-1439 DOI: 10.3788/fgxb20153612.1434.
Modeling of 2 μm GaSb Based Bragg Reflection Waveguide Lasers with Ultra-low Vertical Divergence
光限制因子减小而远场发散角增大。最终在理论上优化设计出了一种双边布拉格反射波导结构的超低垂直发散角2 m GaSb基边发射半导体激光器
其垂直远场发散角可降低到10以下。
Abstract
The GaSb based Bragg reflection waveguide (BRW) lasers emitting at 2 m with ultralow divergence were modeled. The dependence of far-field (FF) on the thickness of Bragg reflector and centre layer
the composition of Bragg reflector were simulated. The corresponding optical confinement factors were calculated. It was found that the increasing of the thickness of Bragg reflector and the thickness of high index material would improve the FF divergence. Thick center layer means the high OCF and FF angle
especially for the low thickness ratio between high index and low index material. Finally
the 2 m GaSb based BRW lasers with an ultra-low vertical divergent FF angle less than 10 was optimized.
关键词
Keywords
references
Karsten S, Samir L, Philpp K, et al. 2 m Laser Sources and Their Possible Applications. Frontiers in Guided Wave Optics and Optoelectronics [M/OL]. [2010-02-01]. www.intechopen.com.
Dutta P S, Bhat H L, Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material [J]. J. Appl. Phys., 1997, 81(9):5821-5870.
Yin Z Y, Tang X H. A review of energy bandgap engineering in Ⅲ-Ⅴ semiconductor alloys for mid-infrared laser applications [J]. Solid State Electron., 2007, 51(1):6-15.
Jacobs U H, Scholle K, Heumann E, et al. Room-temperature external cavity GaSb-based diode laser around 2.13 m [J]. Appl. Phys. Lett., 2004, 85(24):5825-5826.
Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.x m quantum-well diode lasers with low beam divergence and high output power [J]. Appl. Phys. Lett., 2006, 88(8):081115-1-7.
Belenky G, Donetsky D, Shterengas L, et al. Interband GaSb-based laser diodes for spectral regions of 2.3-2.4 m and 3-3.1 m with improved room-temperature performance [J]. SPIE, 2008, 6900:690004-1-10.
Chen J, Kipshidze G, Shterengas L, et al. 2.7 m GaSb-based diode lasers with quinary waveguide [J]. IEEE Photon. Technol. Lett., 2009, 21(16):1112-1114.
Al-Muhanna A, Al-Harbi A, Salhi A. Design of small beam divergence, low threshold, long wavelength GaSb lasers [C]//Symposium on Photonics and Optoelectronics (SOPO 2010), Chengdu China: IEEE, 2010:1-4.
Hosoda T, Chen J F, Tsvid G, et al. Progress in development of room temperature CW GaSb based diode lasers for 2-3.5 m spectral region [J]. Int. J. High Speed Electron. Syst., 2011, 20(1):43-49.
Wang Y B, Xu Y, Song G F, et al. Theoretical analyses on improved beam properties of GaSb-based 2.x-m quantum-well diode lasers with no degradation in laser parameters [J]. Chin. Phys. B, 2012, 21(8):084208-1-6.
Kaspar S, Rattunde M, Topper T, et al. Micro-cavity 2-m GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader [J]. Appl. Phys. Lett., 2013,103(4):041117-1-9.
Xing J L, Zhang Y, Niu Z C, et al. Continuous operation at 80 ℃ for 2 microns antimonide quantum well lasers [C]// 10th National Optoelectronic Technology Conference, Beijing: China High-tech Industrialization Association, 2012:TN248 (in Chinese).
Hempel M, Mattina F L, Tomm J W, et al. Defect evolution during catastrophic optical damage of diode lasers [J]. Semicond. Sci. Technol., 2011, 26(7):075020-1-6.
Novikov I I, Karachinsky L Y, Maximov, et al. Single mode cw operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal [J]. Appl. Phys. Lett., 2006, 88(23):231108-231110.
Wang L J, Tong C Z, Tian S C, et al. High power, ultra-low divergence edge-emitting diode laser with circular beam [J]. IEEE J. Sel. Top. Quant. Electron., 2015, 21(6):1501609-1-7.
Kettler T, Posilovic K, Karachinsky L Y, et al. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays [J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(3):901-908.
Novikov I I, Gordeev N Y, Shernyakov Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence [J]. Appl. Phys. Lett., 2008, 92(10):103515-1-3.
Posilovic K, Kalosha V P, Winterfeldt M, et al. High-power low-divergence 1 060 nm photonic crystal laser diodes based on quantum dots [J]. Electron. Lett., 2012, 48(22):1419-1420.
Tong C Z, Bijlani B J, Alali S, et al. Characteristics of edge-emitting Bragg reflection waveguide lasers [J]. IEEE J. Quantum Electron, 2010, 46(11):1605-1610.
Tong C Z, Chuan N Z, Qin H, et al. Design and analysis of 1.3 m GaAs-based quantum dotvertical-cavity surface-emitting lasers [J]. Acta Phys. Sinica (物理学报), 2005, 54(8):179-184 (in Chinese).
Wang L J, Yang Y, Tong C Z, et al. High power single-sided Bragg reflection waveguide lasers with dual-lobed far field [J]. Appl. Phys. B, 2012, 107(3):809-812.
Tong C Z, Bijlani B, Zhao L J, et al. Mode selectivity in Bragg reflection waveguide lasers [J]. IEEE Photon. Technol. Lett., 2011, 23(14):1025-1027.
Liang W, Xu Y, Choi J M, et al. Engineering transverse Bragg resonance waveguides for large modal volume lasers [J]. Opt. Lett., 2003, 28(21):2079-2081.