XIE Xuan, WU Fei, LI Qi-qing etc. Effects of Yb<sup>3+</sup> in Shell on Temperature Dependent Upconversion Luminescence of NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>@NaYF<sub>4</sub>:<em>x</em>%Yb<sup>3+</sup> Core/ Shell Nanostructures[J]. Chinese Journal of Luminescence, 2015,36(12): 1390-1395
XIE Xuan, WU Fei, LI Qi-qing etc. Effects of Yb<sup>3+</sup> in Shell on Temperature Dependent Upconversion Luminescence of NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>@NaYF<sub>4</sub>:<em>x</em>%Yb<sup>3+</sup> Core/ Shell Nanostructures[J]. Chinese Journal of Luminescence, 2015,36(12): 1390-1395 DOI: 10.3788/fgxb20153612.1390.
Effects of Yb3+ in Shell on Temperature Dependent Upconversion Luminescence of NaYF4:Yb3+,Er3+@NaYF4:x%Yb3+ Core/ Shell Nanostructures
60) nanoparticles were synthesized through thermolysis in oleic acid and 1-octadecene. The upconversion luminescence of these core/shell nanostructures was explored at different temperatures (90-450 K). The results demonstrate that the emission at 525 nm(
2
H
11/2
4
I
15/2
) of core/inert-shell nanoparticles exhibites a different growth from that of core/active-shell nanoparticles. The upconversion emissions of Yb
3+
-doped-active-shell nanoparticles are more easily affected by phonons than those nanoparticles coated with inert layer. Yb
3+
ions in the shell paly an important role of bridging the iner and outer factors to influence upconversion emission.
关键词
Keywords
references
He Q, Fan J, Hu X Y, et al. Hydrothermal synthesis of NaYF4:Er3+ and its ultraviolet up-conversion light emitting property [J]. Chin. J. Lumin.(发光学报), 2012, 33(2):122-127 (in Chinese).
Song K, Du C, Zhao J W, et al. Surface modification of NaYF4:Yb3+,Er3+ luminescent upconversion nanocrystals and biological effects [J]. Chin. J. Lumin.(发光学报), 2012, 33(11):1215-1218 (in Chinese).
Jouber M F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater., 1999, 11(2-3):181-203.
Deng R R, Fei Q, Chen R F, et al. Temporal full-colour tuning through non-steady-state upconversion [J]. Nat. Nanotechnol., 2015, 10:237-242.
Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008, 29(7):937-943.
Wang M, Mi C C, Wang W X, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles [J]. ACS Nano, 2009, 3(6):1580-1586.
Ikehata T, Onodera Y, Takashi, et al. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid [J]. Appl. Surf. Sci., 2015, 348(1):54-59.
Chen G Y, Qiu H L, Prasad P N, et al. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics [J]. Chem. Rev., 2014, 114(10):5161-5214.
Vetrone F, Naccache R, Mahalingam V, et al. The active-core/active- shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater., 2009, 19(18):2924-2929.
Huang F F, Liu X Q, Li W W, et al. Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-m emission [J]. Chin. Opt. Lett., 2014, 12(5):51601-51604.