TIAN Miao-miao, HE Xiao-guang, QI Jin-gang etc. High efficiency Green Organic Light-emitting Diode Without Roll-off Under High Current Density[J]. Chinese Journal of Luminescence, 2015,36(11): 1307-1310
TIAN Miao-miao, HE Xiao-guang, QI Jin-gang etc. High efficiency Green Organic Light-emitting Diode Without Roll-off Under High Current Density[J]. Chinese Journal of Luminescence, 2015,36(11): 1307-1310 DOI: 10.3788/fgxb20153611.1307.
High efficiency Green Organic Light-emitting Diode Without Roll-off Under High Current Density
In order to improve the efficiency of organic light emitting diodes (OLEDs) working at high current density
a LiF layer was inserted between emiiting layer (EML) and electron transporting layer (ETL) of a C545T :Alq
3
based OLED. The external quantum efficiency (EQE) of the device increases with the increasing of the current density. When the current density is 600 mA/cm
2
the maximum value of EQE is the biggest of 4.79%
seven times of the reference OLED.
关键词
Keywords
references
Tang C W, Vanslyke S. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.
Burroughes J, Bradley D, Brown A, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:539-541.
Amelung J, Toerker M, Tomita Y, et al. Integration of high-efficiency PIN organic light-emitting devices in lighting and optoelectronic application [J]. SPIE, 2007, 6486:64860C-1-11.
Parker I. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys., 1994, 75:1656-1666.
Tian M M, Liu X Y. High efficiency tandem organic light-emitting diode based on a new charge connecting layer [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):651-654 (in Chinese).
Tanaka S, Hosakawa C. Organic EL light emitting element with light emitting layers and intermediate conductive layer, US Patent: 6107734 [P]. 2000-08-22.
Luo Y, Aziz H, Popovic Z, et al. Electric-field-induced fluorescence quenching in dye-doped tris(8-hydroxyquinoline) aluminum layers [J]. Appl. Phys. Lett., 2006, 89(10):103505-1-3.
Rothe C, King S, Monkman A. Electric-field-induced singlet and triplet exciton quenching in films of the conjugated polymer polyspirobifluorene [J]. Phys. Rev. B, 2005, 72(8):085220-1-5.
Lattante S, Romano F, Caricato A, et al. Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition [J]. Appl. Phys. Lett., 2006, 89(3):031108-1-3.
Hertel D, Meerholz K. Triplet-polaron quenching in conjugated polymers [J]. J. Phys. Chem. B, 2007, 111:12075-12080.
Nakanotani H, Sasabe H, Adachia C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steadystate high current density [J]. Appl. Phys. Lett., 2005, 86(21):213506-1-3.
Schols S, Verlaak S, Heremans P. A novel organic light emitting device for use in electrically pumped lasers [J]. SPIE, 2006, 6333:63330U-1-9.
Riedl T, Rabe T, Johannes H, et.al. Tunable organic thin-film laser pumped by an inorganic violet diode laser [J]. Appl. Phys. Lett., 2006, 88(24):241116-1-3.
Pflumm C, Karnutsch C, Boschert R, et al. Modelling of the laser dynamics of electrically pumped organic semiconductor laser diodes [J]. SPIE, 2005, 5937:59370X-1-13.
Forrest S, Bradley D, Thompson M. Measuring the efficiency of organic light-emitting devices [J]. Adv. Mater., 2003, 15:1043-1048.