CHEN Dao-ming, GUO Feng-yun, ZHANG Xin-jian etc. Structure and Electrical Properties of InAs/GaInSb Superlattice Film[J]. Chinese Journal of Luminescence, 2015,36(11): 1252-1257
CHEN Dao-ming, GUO Feng-yun, ZHANG Xin-jian etc. Structure and Electrical Properties of InAs/GaInSb Superlattice Film[J]. Chinese Journal of Luminescence, 2015,36(11): 1252-1257 DOI: 10.3788/fgxb20153611.1252.
Structure and Electrical Properties of InAs/GaInSb Superlattice Film
InAs/GaInSb superlattice material was grown on (001)GaAs substrates by molecular beam epitaxy (MBE)
adjusting the growth temperature and Ⅴ/Ⅲ beam ratio. The results show that the growth temperature is in the range of 385 ℃ and 395 ℃
the Ⅴ/Ⅲ beam ratio is from 5.7 :1 to 8.7 :1. RHEED
situ
observations to the GaAs layer (42)
GaSb layer (13) and InAs layer (12) show clarity reconstructed diffraction fringes
the quality of superlattice structure is better
and with increasing temperature
the carrier concentration and mobility of the material are increased.
关键词
Keywords
references
Smith D L,Maihiot C.Proposal for strained type Ⅱ superlattice infrared detectors [J]. J. Appl. Phys., 1987,62:2545-2548.
Youngdale E R, Meyer J R, Hoffman C A, et al. Auger lifetime enhancement in In-GaInSb superlattices [J]. Appl. Phys. Lett., 1994, 64(21):3160-3162.
Bandara S V, Gunapala S D, Liuetal J K. 10-16 m broadband quantum well infrared photodetector [J]. Appl. Phys. Lett., 1998, 72(17):2427-2429.
Li S W, Miao G Q, Jiang H, et al. Vertically stacked, self-assembled MBE-grown InAs quantum dots and application of field effect transistor [J]. Chin. J. Lumin.(发光学报), 2002, 23(6):554-558 (in Chinese).
Xu H X, Wang H L, Yan J Y, et al. Gain and linewidth enhancement factor of InAs/GaAs quantum-dot laser diodes [J]. Chin. J. Lumin.(发光学报), 2015, 36(5):567-571 (in Chinese).
Young M H, Chow D H, Hunter A T.Recent advances in Gal-xInxSb/InAs superlattice IR detector materials[J]. Appl. Surf. Sci., 1998, 123-124:395-399.
Qiu Y X, Li M C, Zhao L C.The interface structure of InAs/GaInSb strained-layer superlattice [J]. J. Funct. Mater.(功能材料), 2005, 36(9):1316-1319 (in Chinese).
Piotrowski J, Rogalski A. Uncooled long wave length infrared photon detectors [J]. Infrared Phys. Technol., 2004, 46:115-131.
Zakharova A A, Semenikhin I A, Chao K A.Optical anisotropy of InAs/GaSb broken-gap quantum wells [J]. J. Experiment. Theoret. Phys., 2012, 114(5):731-737.
Wang D, Donetsky D, Jung S, et al. Carrier lifetime measurements in long-wave infrared InAs/GaSb superlattices under low excitation conditions [J]. J. Electron. Mater., 2012, 41(11):3027-3030.
Wang D J, Kuang H P, Zhou G, et al. Design and implementation of data acquisition system for IRFPA detector [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2009, 24(3):429-432(in Chinese).
Chen J., Wang Q S. Recent progress of infrared upconversion device based on the integration of OLED [J]. Chin. Opt.(中国光学), 2015, 8(1):17-27 (in Chinese).
Zhao L C. The interface structure and photoelectric properties in infrared photoelectric thin films materials [J]. China Surf. Eng.(中国表面工程), 2009, 22(3):1-6 (in Chinese).
Mohseni H. InAs/GaSb Superlattices for Infrared Detectors TypeⅡ [D]. Northwestern University Dissertation, 2001:48.
Zhang J M, Feng G B, Yang P L, et al. Thermal issues of photoconductive HgCdTe detector in mid-infrared laser parameter measurement [J]. Opt. Precision Eng.(光学 精密工程), 2015, 23(1):22-30 (in Chinese).