FAN Si-qiang, PAN Ying-jun,. Micro-evaporation Cavity Cooling Module for High Power Laser Diode[J]. Chinese Journal of Luminescence, 2015,36(10): 1207-1211
FAN Si-qiang, PAN Ying-jun,. Micro-evaporation Cavity Cooling Module for High Power Laser Diode[J]. Chinese Journal of Luminescence, 2015,36(10): 1207-1211 DOI: 10.3788/fgxb20153610.1207.
Micro-evaporation Cavity Cooling Module for High Power Laser Diode
Based on the theory of phase change decalescence of throttled cooling medium with high pressure in the micro evaporation cavity
a new pack module was designed for the refrigeration of high power laser diode. Oxygen-free copper with high heat-conducting was adopted in the module. The micro evaporative cooling module was constructed with the process of wire-electrode cutting
chemical corrosion
and welding by the newly designed welding equipment. According to thermal model of high power laser diode
numerical simulation is conducted theoretically on the module
and the result is consistent with the experiment of the heat dissipation of laser bar with the power of 60 W. From the experiment
the thermal resistance is 0.289 ℃/W when the refrigerant flow rate is 23 mL/min.
关键词
Keywords
references
Wang D, Li X Q. Latest developments and application status of diode laser [J]. Opt. Precision Eng.(光学 精密工程), 2001, 9(3):279-283 (in Chinese).
Tian Z H, Sun C L, Cao J S, et al. Junction temperature measurement of high power diode laser [J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(6):1244-1249 (in Chinese).
Mundinger D, Beach R, Benett W, et al. Demonstration of high performance silicon microchannel heat exchangers for laser diode array cooling [J]. Appl. Phys. Lett., 1988, 53(12):1030-1032.
Skidmore J A, Freitas B L, Crawford J, et al. Silicon monolithic microchannel-cooled laser diode array [J]. Appl. Phys. Lett., 2000, 77(1):10-12.
Yang T, He Y, Liu T T. Silicon micro-channel heat sinks for high-power laser diode arrays [J]. Opt. Precision Eng.(光学 精密工程), 2009, 17(9):2170-2175 (in Chinese).
Liu G, Tang X J, Wang C, et al. Design of micro-channel heat sink for high power laser diode [J]. High Power Laser and Particle Beams (强激光与粒子束), 2011, 23(8):2057-2061 (in Chinese).
Yao S, Ding P, Liu J, et al. Microchannel heat sink of high beam quality semiconductor laser array [J]. Chin. J. Lasers (中国激光), 2009, 36(9):2286-2289 (in Chinese).
Liu Y, Liao X S, Qin L, et al. Oxygen-free copper microchannel heat sink of high power semiconductor laser [J]. Chin. J. Lumin.(发光学报), 2005, 26(1):109-114 (in Chinese).
Wang L F, Shao B D, Cheng H M, et al. Optimization design the configuration sizes of multi-layer rectangle micro-channel heat sink [J]. Appl. Mech. Mater., 2014, 444-445:1101-1106.
Li J, Li C, Xu H, et al. Thermal analysis of high power semiconductor laser bar [J]. Chin. J. Lumin.(发光学报), 2014, 35(12):1474-1479 (in Chinese).
Ren T, Ding G, Wang T, et al. A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory [J]. Appl. Therm. Eng., 2013, 59(1-2):660-674.
Yang B, Gao S X, Liu J, et al. Spray cooling of high power diode laser [J]. High Power Laser and Particle Beams (强激光与粒子束), 2014, 26(7):712-714 (in Chinese).
Fan S Q, Liang Y P, Zhang P. Expansion refrigeration of high power semiconductor laser. China CN201110278193.3 . 2012-2-15.
Shen Z Y, Liu B, Yin H, et al. The performance study on microchannel evaporator in R404a cryogenic system [J]. Refrig. Cryo Supercond.(制冷技术 低温与超导), 2014, 42(5):78-83 (in Chinese).
Xiang W, Ye D D, Liao Q, et al. Experimental study of gas-liquid two-phase flow in a micro-channel with irregular cross sections [J]. J. Eng. Thermophys.(工程热物理学报), 2013, 34(6):1087-1090 (in Chinese).
Wang A G, Yuan J F, Tang D W, et al. Cavitation-boiling coupling phenomenon experimental investigation of R134 mixed with lubricating oil flow in micro-channel [J]. J. Eng. Thermophys.(工程热物理学报), 2012, 33(5):816-818 (in Chinese).
Dai T L, Luo Y J, Wang H, et al. The thermal Impadance surveying for modular microchannel cooler of the laser diode bar [J]. Laser J.(激光杂志), 2000, 21(3):29-31 (in Chinese).