ZHANG Quan-lin, SU Long-xing, WU Tian-zhun etc. Controllable Growth of High Quality ZnO Thin Film on <em>c</em>-sapphire[J]. Chinese Journal of Luminescence, 2015,36(10): 1171-1177
ZHANG Quan-lin, SU Long-xing, WU Tian-zhun etc. Controllable Growth of High Quality ZnO Thin Film on <em>c</em>-sapphire[J]. Chinese Journal of Luminescence, 2015,36(10): 1171-1177 DOI: 10.3788/fgxb20153610.1171.
Controllable Growth of High Quality ZnO Thin Film on c-sapphire
-sapphire substrate by using a technique of plasma assisted molecular beam epitaxy (P-MBE)
in which MgO and low temperature ZnO are used as buffer layers. High-resolution XRD measurement shows the full width at half maximum (FWHM) of (002) and (102) are only 68.4 and 1 150 arcsec
respectively. In the meantime
atomically smooth surface with root mean square (RMS) surface roughness of 0.842 nm is realized. In addition
Raman and photoluminescence (PL) measurements show that ZnO layer has extremely low stress level and defect density. The realization of high quality ZnO thin film pays a good way for the application of ZnO-based optoelectronic devices.
关键词
Keywords
references
Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72(22):3270-3272.
Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun., 1997, 103:459-463.
Bagnall D, Chen Y F, Shen M Y, et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE [J]. J. Cryst. Growth, 1998, 184:605-609.
Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4:42-46.
Shen D Z, Mei Z X, Liang H L, et al. ZnO-based matierial, heterojunction and photoelctronic device [J]. Chin. J. Lumin.(发光学报), 2014, 35(1):1-60 (in Chinese)
Fan X M, Lian J S, Guo Z X, et al. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates [J]. Appl. Surf. Sci., 2005, 239:176-181.
Han J, Zhang P, Gong H B, et al. Influence of the growth conditions on the transparent conductive properties of ZnO:Al thin films grown by pulsed laser deposition [J]. Acta Phys. Sinica (物理学报), 2013, 62(21):216102-1-5 (in Chinese).
Carcia P F, McLean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering [J]. Appl. Phys. Lett., 2003, 82(8):1117-1119.
Liu M, Liu Z W, Gu J F, et al. Effect of sapphire substrate pre-treatment on the growth of ZnO films [J]. Acta Phys. Sinica (物理学报), 2008, 57(1):1133-1137 (in Chinese).
Gao L L, Liu J S, Zhang M, et al. Preparation and characterization N doped p-type MgZnO film [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2014, 29(4):499-503 (in Chinese).
Zhou J, He X L, Jin H, et al. Flexible ZnO thin film SAW device on polyimide substrate [J]. Opt. Precision Eng.(光学 精密工程), 2014, 22(2):346-353 (in Chinese)
Ohnishi S, Hirokawa Y, Shiosaki T, et al. Chemical vapor deposition of single-crystalline ZnO film with smooth surface on intermediately sputtered ZnO thin film on sapphire [J]. Jpn. J. Appl. Phys., 1978, 17:773-778.
Chen X L, Xue J M, Zhang J Q, et al. Effect of substrate temperature on the ZnO thin films as TCO in solar cells grown by MOCVD technique [J]. Acta Phys. Sinica (物理学报), 2007, 56(1):1563-1567 (in Chinese)
Ohnishi S, Hirokawa Y, Shiosaki T, et al. Growth of ZnO thin film by laser MBE: Lasing of exciton at room temperature [J]. Phys. Stat. Sol.(b), 1997, 202:669-674.
Zhao P C, Zhang Z Z, Yao B, et al. Electrical properties of ZnO thin films growth under different conditions [J]. Chin. J. Lumin.(发光学报), 2013, 34(11):1430-1434 (in Chinese)
Su S C, Lv Y M, Mei T. Fabrication and optical properties of ZnO/ZnMgO multiple quantum wells on m-sapphire substrates [J]. Acta Phys. Sinica (物理学报), 2011, 60(9):096801-1-4 (in Chinese).
Ohtomo A, Tamura K, Saikusa K, et al. Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001)substrates [J]. Appl. Phys. Lett., 1999, 75(18):2635-2637.
Nakahara K, Akasaka S, Yuji H, et al. Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates [J]. Appl. Phys. Lett., 2010, 97(1):013501-1-3.
Fons P, Iwata K, Yamada A, et al. Uniaxial locked epitaxy of ZnO on the a face of sapphire [J]. Appl. Phys. Lett., 2000, 77(12):1801-1803.
Chen Y F, Bagnall D, Koh H, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization [J]. J. Appl. Phys., 1998, 84:3912-3917.
zgr V, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys., 2005, 98(4):041301-1-6.
Lester S, Ponce F, Craford M, et al. High dislocation densities in high efficiency GaN-based light-emitting diodes [J]. Appl. Phys. Lett., 1995, 66(8):1249-1251.
Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281:956-1001.
Decremps F, Pellicer-Porres J, Saitta A M, et al. High-pressure Raman spectroscopy study of wurtzite ZnO [J]. Phys. Rev. B, 2002, 65(9):092101-1-7.
Vanheusden K, Warren W, Seager C, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys. B, 1996, 79:7983-7987.
Vanheusden K, Seager C, Warren W, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett., 1996, 68(3):403-405
Shan F K, Liu G X, Lee W L, et al. The role of oxygen vacancies in epitaxial-deposited ZnO thin films[J]. J. Appl. Phys., 2007, 101(5):053106-1-6.
Bimolecularly Passivated Buried Interface for Highly Efficient Perovskite Solar Cells
Progress on Single-crystal Perovskite Solar Cells
Responsivity Characteristics of ZnO Schottky Ultraviolet Photodetectors with High Gain
ZnO Luminescence Behavior Under Low Temperature by Ion-beam-induced Luminescence
Research Progress of Lu3Al5O12-based Scintillation Ceramics
Related Author
WEN Chao
CHEN Qianyu
LU Yingjie
LIU Jiapeng
YAO Guangping
WANG Lidan
SU Zisheng
LI Chao
Related Institution
School of Advanced Manufacturing, Fuzhou University
Institute for Photonics Technology, Fujian Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Fujian Provincial Collaborative Innovation Center for Ultra-Precision Optical Engineering and Applications, Quanzhou Normal University
College of Physics and Information Engineering, Quanzhou Normal University
College of Chemical Engineering and Material, Quanzhou Normal University
College of Photonic and Electronic Engineering, Fujian Normal University