浏览全部资源
扫码关注微信
1. 电子科技大学光电信息学院 薄膜与集成器件国家重点实验室,四川 成都,610054
2. 电子科技大学中山学院电子信息学院 薄膜与集成器件国家重点实验室中山分室,广东 中山,528402
Received:16 July 2015,
Revised:27 August 2015,
Published:10 October 2015
移动端阅览
刘新辉, 杨健君, 于军胜. 空穴阻挡中间层的加入对WOLEDs光谱稳定性的提高[J]. 发光学报, 2015,36(10): 1145-1149
LIU Xin-hui, YANG Jian-jun, YU Jun-sheng. Enhancement of WOLEDs Spectral Stability by Adding Hole-blocking Interlayer[J]. Chinese Journal of Luminescence, 2015,36(10): 1145-1149
刘新辉, 杨健君, 于军胜. 空穴阻挡中间层的加入对WOLEDs光谱稳定性的提高[J]. 发光学报, 2015,36(10): 1145-1149 DOI: 10.3788/fgxb20153610.1145.
LIU Xin-hui, YANG Jian-jun, YU Jun-sheng. Enhancement of WOLEDs Spectral Stability by Adding Hole-blocking Interlayer[J]. Chinese Journal of Luminescence, 2015,36(10): 1145-1149 DOI: 10.3788/fgxb20153610.1145.
制备了多层结构合成的白光有机电致发光器件(WOLEDs)
通过在发光层中加入一层空穴阻挡层TPBi来提高器件的光谱稳定性。当TPBi厚度为2.5 nm时
在电压由8 V升高到12 V的过程中
CIE色坐标的变化量为(0.031
0.006)。器件的电流效率为24.7 cd/A
外部量子效率最大为8.2%。相对于没有加入中间层的器件
8 V电压下的色坐标由(0.435
0.472)变为(0.333
0.439)。实验结果表明
在发光层中添加中间层可以改变器件发光的色坐标并提升光谱的稳定性。
The multilayer structure of phosphorescent organic white light-emitting devices(WOLEDs)were fabricated
and the spectral stability was enhanced by adding hole-blocking layer (TPBi) in the light emitting layer. When the thickness of TPBi is 2.5 nm
the change of CIE coordinate is (0.031
0.006) during the voltage changing from 8 to 12 V. In addition
the current efficiency is 24.7 cd/A
and the maximum external quantum efficiency is 8.2%. Compared with the device without hole-blocking layer
the CIE coordinate changes from (0.435
0.472) to (0.333
0.439) while the voltage is 8 V. The experiment results show that the CIE coordinate can be changed and the spectral stability can be enhanced by adding an interlayer in the light emitting layer.
Wang Q, Ding J, Ma D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission-mechanism analysis [J]. Adv. Funct. Mater., 2009, 19(1):84-95.
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 1995, 267(5202):1332-1334.
Liu B Q, Tao H, Su Y J, et al. Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness [J]. Chin. Phys. B, 2013, 22(7):450-453.
Li Y, Zhang W, Zhang L, et al. Ultra-high general and special color rendering index white organic light-emitting device based on a deep red phosphorescent dye [J]. Org. Electron., 2013, 14(12):3201-3205.
Peng T, Li G, Ye K, et al. Concentration-insensitive and low-driving-voltage OLEDs with high efficiency and little efficiency roll-off using a bipolar phosphorescent emitter [J]. Org. Electron., 2013, 14(6):1649-1655.
Liu S, Yu J, Ma Z, et al. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer [J]. J. Lumin., 2013, 134(3):665-669.
Qu B, Chen Z, Xu F, et al. Color stable white organic light-emitting diode based on a novel triazine derivative [J]. Org. Electron., 2007, 8(5):529-534.
Jiang W, Duan L, Qiao J, et al. Tuning of charge balance in bipolar host materials for highly efficient solution-processed phosphorescent devices [J]. Org. Lett., 2011, 13(12):3146-3149.
Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244):234-238.
D'Andrade B W, Esler J, Lin C, et al. Realizing white phosphorescent 100 lm/W OLED efficacy [J]. SPIE, 2008, 7051:70510Q-1-5.
Jou J H, Chen P W, Chen Y L, et al. OLEDs with chromaticity tunable between dusk-hue and candle-light [J]. Org. Electron., 2013, 14(1):47-54.
Qu B, Chen Z, Xu F, et al. Color stable white organic light-emitting diode based on a novel triazine derivative [J]. Org. Electron., 2007, 8(5):529-534.
Ho C L, Lin M F, Wong W Y, et al. High-efficiency and color-stable white organic light-emitting devices based on sky blue electrofluorescence and orange electrophosphorescence [J]. Appl. Phys. Lett., 2008, 92(8):2905-2910.
Guo L Y, Zhang X L, Zhuo M J, et al. Non-interlayer and color stable WOLEDs with mixed host and incorporating a new orange phosphorescent iridium complex [J]. Org. Electron., 2014, 15(11):2964-2970.
Zhao F, Zhang Z, Liu Y, et al. A hybrid white organic light-emitting diode with stable color and reduced efficiency roll-off by using a bipolar charge carrier switch [J]. Org. Electron., 2012, 13(6):1049-1055.
Yang H, Xie W, Zhao Y, et al. High efficiency small molecule white organic light-emitting devices with a multilayer structure [J]. Solid State Commun., 2006, 139(9):468-472.
Jou J H, Chou Y C, Shen S M, et al. High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer [J]. J. Mater. Chem., 2011, 21(46):18523-18526.
Wang X, Zhao J, Zhong J, et al. Improved colour stability of phosphorescent white organic light-emitting devices by manipulating electron transport [J]. Eur. Phys. J. Appl. Phys., 2014, 67(1):1328-1331.
Xie G, Zhang Z, Xue Q, et al. Tailoring the efficiencies and spectra of white organic light-emitting diodes with the interlayers [J]. J. Phys. Chem. C, 2010, 115(1):264-269.
Wang Q, Yu J, Zhao J, et al. Enhancement of charge carrier recombination efficiency by utilizing a hole-blocking interlayer in white OLEDs [J]. J. Phys. D: Appl. Phys., 2013, 46(15):1-8.
Xiao L, Chen Z, Qu B, et al. Recent progresses on materials for electrophosphorescent organic light-emitting devices [J]. Adv. Mater., 2010, 23(8):926-952.
Hsiao C H, Liu S W, Chen C T, et al. Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices [J]. Org. Electron., 2010, 11(9):1500-1506.
Naka S, Okada H, Onnagawa H, et al. High electron mobility in bathophenanthroline [J]. Appl. Phys. Lett., 2000, 76(2):197-199.
0
Views
186
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution