浏览全部资源
扫码关注微信
1. 华北电力大学 资源与环境研究院 北京,102206
2. 华北电力大学 区域能源系统优化教育部重点实验室, 北京 102206
Received:18 May 2015,
Revised:08 June 2015,
Published:03 August 2015
移动端阅览
邱尤丽, 曾娅玲, 姜龙等. 基于苯溶剂化效应的多种邻苯二甲酸酯(PAEs)拉曼特征振动光谱辨识[J]. 发光学报, 2015,36(8): 976-982
QIU You-li, ZENG Ya-ling, JIANG Long etc. Identification of the Raman Characteristic Spectrum Vibrations for Various PAEs Based on Benzene Solvent Effect[J]. Chinese Journal of Luminescence, 2015,36(8): 976-982
邱尤丽, 曾娅玲, 姜龙等. 基于苯溶剂化效应的多种邻苯二甲酸酯(PAEs)拉曼特征振动光谱辨识[J]. 发光学报, 2015,36(8): 976-982 DOI: 10.3788/fgxb20153608.0976.
QIU You-li, ZENG Ya-ling, JIANG Long etc. Identification of the Raman Characteristic Spectrum Vibrations for Various PAEs Based on Benzene Solvent Effect[J]. Chinese Journal of Luminescence, 2015,36(8): 976-982 DOI: 10.3788/fgxb20153608.0976.
利用密度泛函与自洽反应场理论在B3LYP/6-311G(d)水平下对16种邻苯二甲酸酯(PAEs)进行结构优化
并计算气态环境及溶剂中PAEs的拉曼光谱振动频率和去偏振度.研究显示
16种PAEs拉曼振动归属为苯环变形、酯基振动、CC伸缩、CH摇摆、CH伸缩与耦合振动.其中酯基官能团出峰位置在1 700~1 780 cm
-1
之间
拉曼峰较强
去偏振度较低(振动的对称性较强)
可将酯基振动作为特征振动;但气态环境下仅12种PAEs拉曼峰之间的最小波数差大于显微拉曼光谱仪的检出限(0.2 cm
-1
)
即利用酯基频区的去偏振度和拉曼峰不能完全辨识16种PAEs.溶剂化效应分析显示
溶剂苯对16种PAEs具有明显的溶剂化增强效应
16种PAEs拉曼峰之间最小波数差均增大到0.2 cm
-1
以上
且峰强增加了23%~183%
说明溶剂化效应下可利用酯基频区的去偏振度和拉曼峰辨识16种PAEs.本文的研究结果为PAEs拉曼光谱检测提供了理论依据.
By means of density functional theory and self-consistent reaction field in B3LYP/6-311G(d) method
the 16 kinds of phthalate esters (PAEs): BBP
DBP
DCHP
DEHP
DEP
DIDP
DINP
DMP
DNOP
BMPP
DAP
DHP
DIPrP
DMEP
DPhP and DPP were selected and their structures were optimized. Their Raman vibrational frequencies and depolarization in atmosphere and 6 kinds of solvents were calculated. The results show that Raman vibrations of 16 PAEs are assigned to ring deformation
ester base deformation
CC stretching
CH wiggle
CH stretching and of these several patterns. The peak position of the ester base functional group is relatively fixed in 1 700-1 780 cm
-1
. Raman peak of ester base vibration is stronger
and the polarization degree is lower (the symmetry of vibration was stronger). Therefore
the ester base vibration can be regarded as the characteristic vibration. But the minimum differential wave numbers of only 12 kinds of PAEs are larger than micro Raman spectrometer detection limit (0.2 cm
-1
)
so the 16 kinds of PAEs can not be fully identified by depolarization and the Raman peak of ester base vibration frequency area. Solvent effect analysis shows that benzene solvent has obvious enhanced solvent effects on 16 kinds of PAEs. The minimum differential wave numbers of 16 kinds of PAEs increase to 0.2 cm
-1
above and the Raman intensity increases to 23%-183%
which illustrate that the 16 kinds of PAEs can be fully identified by depolarization and the Raman peak of ester base vibration frequency area. It provides theoretical basis for the detection of PAEs Raman spectroscopy.
Xie W J. The research status of phthalate esters [J]. Food Eng.(食品工程), 2014, 2(1):12-14 (in Chinese).
Holger M K, Hermann M. New metabolites of di(2-ethylhexyl) phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP [J]. Arch Toxicol., 2005, 79(7):367-376.
Klamsmemier R E. Microbial Biodeterioration [M]. London: Academic Press, 1981:431.
Harris C A, Parker M G, Sumpter J P. The estrogenic activity of phthalate esters in vitro [J]. Environ. Health Persp., 1997, 105(8):802-811.
Serodioa P, Nogueira J M F. Considerations on ultra-trace analysis of phthalates in drinking water [J]. Water Res., 2006, 40:2572-2582.
Zhang H, Chen X Q, Jiang X Y. Determination of phthalate esters in water samples by ionic liquid cold-induced aggregation dispersive liquid-liquidmicroextraction coupled with high-performance liquid chromatography [J]. Anal. Chim. Acta, 2011, 689:137-142.
He L L, Liu Y, Lin M S, et al. A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates [J]. Sens. Instrum. Food Qual. Safety, 2008, 2:66-71.
Xie Y F, Wang X, Han X X, et al. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering [J]. Analyst, 2010, 135:1389-1394.
Nyquist R A. Raman group frequency correlations: Phthalate esters [J]. Appl. Spectrosc., 1972, 26(1):81-85.
Norbygaard T, Berg R W. Analysis of phthalate ester content in poly (vinyl chloride) plastics by means of Fourier transform Raman spectroscopy [J]. Appl. Spectrosc., 2004, 58(11):410-413.
Ji L J, Xie Y F, Yao W R. Rapid analysis of plastic stabilizer phthalates by surface enhancement Raman spectroscopy [J]. Sci. Technol. Food Ind.(食品工业科技), 2012, 33(15):297-300 (in Chinese).
Chen T, Yang X, Zhou C X, et al. Theoretical study on antioxidant activity of lipolic acid-solvent effect [J]. Chem. Res. Appl.(化学研究与应用), 2013, 25(4):572-575 (in Chinese).
Zeng Y L, Jiang L, Cai X Y, et al. Identification of the characteristic vibrations for 16 PAHs based on Raman spectrum [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2014, 34(11):2999-3004 (in Chinese).
Zou Q, Jiang, Du X Y, et al. Optimization of phenanthrene structure and vibrational spectra studies based on density functional theory [J]. Chin J. Lumin.(发光学报), 2012, 33(12):1389-1397 (in Chinese).
Liu Y L, Xu Y, Liu G S. Density functional theoretical (DFT) study on the solvent effects of dodecylamine collector and its hydrogen bonding interaction with water [J]. Comput. Appl. Chem.(计算机与应用化学), 2014, 31(7):769-773 (in Chinese).
Zhao Y N, Mo F, Fu X W. The harm of phthalate acid esters (PAEs) [J]. Mod. Agric. Sci. Technol.(现代农业科技), 2011, 22:285-286 (in Chinese).
Lai Y, Pan W, Ni S. Theoretical evaluation of the confifurations and Raman sprctra of 209 polychlorinated biphenyl congeners [J]. Chemosphere, 2011, 85(3):412-417.
Liu S S, Liu F, Liu H L. Toxicities of 20 kinds of water-soluble organic solvents to Vibrio-qinghaiensissp. Q67 [J]. Chin. Environ. Sci.(中国环境科学), 2007, 27(3):371-376 (in Chinese).
Zhu Z Y, Gu R A, Lu T H. Raman Spectroscopy Application in Chemistry [M]. Shenyang: Northeastern University Press, 1998:30 (in Chinese).
Zhu M H, Hu P. Instrument Analysis [M]. Beijing: Higher Education Press, 2008:426 (in Chinese).
Cen H. Applications in Microscale Mechanics Measurement by Micro-Raman Spectroscopy . Tianjin: Tianjin University, 2006 (in Chinese).
Tu J R. Chemometrics for Sensitivity Enhancement in Electroanalysis . Tianjin: Nankai University, 2014 (in Chinese).
Wang Y. Solvent Effect Study on Heterocyclic Ketone Compounds by Resonance Raman Spectra . Hangzhou: Zhejiang Sci-tech University, 2012 (in Chinese).
Lin S M, Zeng Y H. Analytical Chemistry (Instrument Analysis) [M]. Beijing: Higher Education Press, 1994:396 (in Chinese).
Lin X K, Xu Z J, Li Y P. Determination of PAEs in water by ultrasound-assisted emulsion microextraction high performance liquid chromatography [J]. Chin. J. Heath Lab. Technol.(中国卫生检验杂志), 2012, 22(7):1558-1562 (in Chinese).
Zhou W J, Feng G. Research progress of phthalic acid esters in food and its detection [J]. Sci. Technol. Food Ind.(食品工业科技), 2012, 33(10):445-452 (in Chinese).
0
Views
308
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution