Cu在a-IZO中的扩散得到了抑制.所制备的TFT的迁移率、亚阈值摆幅和阈值电压分别为12.9 cm
2
/(Vs)、0.28 V/dec和-0.6 V.
Abstract
Cu was used as the source/drain (S/D) electrodes of amorphous indium-zinc-oxide (a-IZO) thin-film transistors (TFTs) in order to realize low-resistance metallization in oxide thin film transistors. Cu film with a resistivity as low as 2.0 cm was deposited by optimizing the sputtering process. The crystal structure
adhesive property of Cu film as well as the interfaces of Cu/a-IZO were investigated. In addition
a-IZO TFTs with Cu S/D electrodes were fabricated. The Cu films were polycrystalline. The adhesion of Cu to glass substrate was enhanced by introducing an a-IZO film. Meanwhile
the diffusion of Cu atoms was suppressed in a-IZO. The fabricated TFT exhibited a saturated mobility of 12.9 cm
2
/(Vs)
a subthreshold voltage of 0.28 V/dec and a threshold voltage of -0.6 V.
关键词
Keywords
references
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: A review of recent advances [J]. Adv. Mater., 2012, 24(22):2945-2986.
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J]. Thin Solid Films, 2011, 520(6):1679-1693.
Kang D H, Kang I, Ryu S H, et al. Self-aligned coplanar a-IGZO TFTs and application to high-speed circuits [J]. IEEE Electron. Dev. Lett., 2011, 32(10):1385-1387.
Arai T, Sasaoka T. Emergent oxide TFT technologies for next-generation AM-OLED displays [J]. SID Symposium Digest of Technical, 2011, 42(1):710-713.
Nagao K, Neaton J B, Ashcroft N W. First-principles study of adhesion at Cu/SiO2 interfaces [J]. Phys. Rev. B, 2003, 68(12):125403-1-8.
Yim J R, Jung S Y, Yeon H W, et al. Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor [J]. Jpn. J. Appl. Phys., 2012, 51(1R):011401-1-5.
Lee C K, Park S Y, Jung H Y, et al. High performance Zn-Sn-O thin film transistors with Cu source/drain electrode [J]. Phys. Stat. Sol. RRL, 2013, 7(3):196-198.
Lee Y W, Kim S J, Lee S Y, et al. Effect of Ti/Cu source/drain on an amorphous IGZO TFT employing SiNx passivation for low data-line resistance [J]. Electrochem. Solid-State Lett., 2012, 15(4):H126-H129.
Park J S, Kim T S, Son K S, et al. Ti/Cu bilayer electrodes for SiNx-passivated Hf-In-Zn-O thin film transistors: Device performance and contact resistance [J]. Appl. Phys. Lett., 2010, 97(16):162105-1-3.
Liu K H, Chang T C, Wu M S, et al. Investigation of channel width-dependent threshold voltage variation in a-InGaZnO thin-film transistors [J]. Appl. Phys. Lett., 2014, 104(13):133503-1-4.
Seo B H, Lee S H, Park I S, et al. Effect of nitric acid on wet etching behavior of Cu/Mo for TFT application [J]. Curr. Appl. Phys., 2011, 11(1):S262-S265.
Yang H J, Ko Y K, Soh H S, et al. A dry-patterned Cu(Mg) alloy film as a gate electrode in a thin-film transistor liquid crystal display [J]. J. Electron. Mater., 2004, 33(7):780-785.
Yun P S, Koike J. Metal reaction doping and Ohmic contact with Cu-Mn electrode on amorphous In-Ga-Zn-O semiconductor [J]. J. Electrochem. Soc., 2011, 158(10):H1034-H1040.
ASTM D 3359. Standard Test Methods for Measuring Adhesion by Tape Test [S]. ASTM International.
Lan L F, Zhao M J, Xiong N N, et al. Low-voltage high-stability indium-zinc oxide thin-film transistor gated by anodized neodymium-doped aluminum [J]. IEEE Electron. Dev. Lett., 2012, 33(6):827-829.
Zhao M J, Lan L F, Xu H, et al. Wet-etch method for patterning metal electrodes directly on amorphous oxide semiconductor films [J]. ECS Solid State Lett., 2012, 1(5):P82-P84.
Gao X, Aikawa S, Mitoma N, et al. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors [J]. Appl. Phys. Lett., 2014, 105(2):023503-1-5.
Chan K Y, Tou T Y, Teo B S. Thickness dependence of the structural and electrical properties of copper films deposited by dc magnetron sputtering technique [J]. Microelectron. J., 2006, 37(7):608-612.
Chan K Y, Teo B S. Investigation into the influence of direct current (DC) power in the magnetron sputtering process on the copper crystallite size [J]. Microelectron. J., 2007, 38(1):60-62
Chan K Y, Teo B S. Sputtering power and deposition pressure effect on the electrical and structural properties of copper thin films [J]. J. Mater. Sci., 2005, 40(22):5971-5981.
Yin M, Wu C K, Lou Y B, et al. Copper oxide nanocrystals [J]. J. Am. Chem. Soc., 2005, 127(26):9506-9511.
Akimoto K, Shima Y, Jincho M, et al. Channel-etched c-axis aligned crystalline oxide semiconductor FET using Cu wiring [J]. SID Symposium Digest of Technical, 2014, 45(1):465-468.
Xu H, Lan L F, Xu M, et al. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique [J]. Appl. Phys. Lett., 2011, 99(25):253501-1-4.