LI Xiu-shan, NING Yong-qiang, ZHANG Xing etc. Effect of Indium Tin Oxide as Transparent Conductive Layer on Shallow Surface Relief VCSEL[J]. Chinese Journal of Luminescence, 2015,36(8): 930-934
LI Xiu-shan, NING Yong-qiang, ZHANG Xing etc. Effect of Indium Tin Oxide as Transparent Conductive Layer on Shallow Surface Relief VCSEL[J]. Chinese Journal of Luminescence, 2015,36(8): 930-934 DOI: 10.3788/fgxb20153608.0930.
Effect of Indium Tin Oxide as Transparent Conductive Layer on Shallow Surface Relief VCSEL
The mode stability of shallow surface relief vertical cavity surface emitting laser (VCSEL) is constrained by the nonuniform current density distribution in the active region. In order to solve this problem
a new type of structure was put forward
in which indium tin oxide (ITO) transparent conductive layer was employed in shallow surface relief VCSEL. This structure not only can increase the threshold gain of the higher-order modes but also can improve the gain of fundamental model and strengthen the suppressive effect of fundamental mode on higher order mode. The influence of the ITO thickness on the threshold gain and the effect of ITO on the current density distribution in active region are studied. It is found that the suppressive effect of fundamental mode on higher order mode is strongest when the thickness of ITO is integral multiples of the half wavelength. The gain of fundamental mode increases and the gain of higher order decreases with the improving of the current density distribution in the active region of VCSEL
and at the same time
the series resistance and the voltage are also reduced.
关键词
Keywords
references
Zhang J S, Liu X L, Cui J J, et al. High peak power 808 nm vertical cavity surface emitting laser array [J]. Chin. J. Lumin.(发光学报), 2014, 35(9):1098-1103 (in Chinese).
Chang-Hasnain C J, Zhou Y, Huang M, et al. High-contrast grating VCSELs [J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(3):869-878.
Debernardi P, Ostermann J M, Feneberg M, et al. Reliable polarization control of VCSELs through monolithically integrated surface gratings: A comparative theoretical and experimental study [J]. IEEE J. Sel. Top. Quant. Electron., 2005, 11(1):107-116.
Ostermann J M, Debernardi P, Jalics C, et al. Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes [J]. IEEE Photon. Technol. Lett., 2005, 17(8):1593-1595.
Unold H J, Mahmoud S W Z, Jager R, et al. Large-area single-mode VCSELs and the self-aligned surface relief [J]. IEEE J. Sel. Top. Quant. Electron., 2001, 7(2):386-392.
Haglund A, Gustavsson J S, Vukusic J, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief [J]. IEEE Photon. Technol. Lett., 2004, 16(2):368-370.
Alias M S, Shaari S, Leisher P O, et al. Single transverse mode control of VCSEL by photonic crystal and trench patterning [J]. Photon. Nanostruct. Fund. Appl., 2010, 8(1):38-46.
Yang Z H, Leger J R, Shchegrov A V. Three-mirror resonator with aspheric feedback mirror for laser spatial mode selection and mode shaping [J]. IEEE J. Sel. Top. Quant. Electron., 2004, 40(9):1258-1269.
Al-Omari A N, Lear K L. High-speed 980 nm vertical cavity surface emitting lasers with a multi-oxide layer structure for single-mode operation [J]. IET Optoelectron., 2011, 5(2):57-61.
Unold H J, Mahmoud S W Z, Jager R, et al. Improving single-mode VCSEL performance by introducing a long monolithic cavity [J]. IEEE Photon. Technol. Lett., 2000, 12(8):939-941.
Zhou D, Mawst L J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers [J]. IEEE J. Sel. Top. Quant. Electron., 2002, 38(12):1599-1606.
Shi J W, Chen C C, Wu Y S, et al. High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength [J]. IEEE Photon. Technol. Lett., 2008, 20(13):1121-1123.
Yang H, Guo X, Guan B L, et al. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers [J]. Acta Phys. Sinica (物理学报), 2008, 57(5):2959-2065 (in Chinese).
Hao Y Q, Luo Y, Feng Y, et al. Large aperture vertical cavity surface emitting laser with distributed ring contact [J]. Appl. Opt., 2011, 50(7):1034-1037.
Xun M, Xu C, Wang J, et al. The effect of indium tin oxide as transparent conductive layer for oxide-confined VCSELs //Optoelectronic Devices and Integration, Wuhan: Optical Society of America, 2014:OTh4C-1-5.
Camps T, Bardinal V, Havard E, et al. Management of the electrical injection uniformity in broad-area top-emitting VCSELs [J]. Eur. Phys. J. D, 2010, 59(1):53-57.
Li X S, Ning Y Q, Jia P, et al. Rectangular mesa shaped vertical cavity surface emitting laser with shallow surface relief [J]. Chin. J. Lasers (中国激光), 2014, 41(12):1202005-1-6 (in Chinese).
Lear K L, Choquette K D, Jr Schneider R P, et al. Modal analysis of a small surface emitting laser with a selectively oxidized waveguide [J]. Appl. Phys. Lett., 1995, 66(20):2616-2618.