ZHENG Xin-he, XIA Yu, LIU San-jie etc. MBE Growth of GaNAs-based Superlattice Solar Cells and Device Properties[J]. Chinese Journal of Luminescence, 2015,36(8): 923-929
ZHENG Xin-he, XIA Yu, LIU San-jie etc. MBE Growth of GaNAs-based Superlattice Solar Cells and Device Properties[J]. Chinese Journal of Luminescence, 2015,36(8): 923-929 DOI: 10.3788/fgxb20153608.0923.
MBE Growth of GaNAs-based Superlattice Solar Cells and Device Properties
Period thickness-dependent GaNAs/InGaAs short-period superlattice and solar cells with an absorption edge of around 1 eV were grown by MBE. High-resolution X-ray diffraction (HRXRD) measurements indicate that the crystalline quality of SPSL is improved while the period thickness increases from 6 nm to 20 nm. However
when the period further rises
the period repeatability and interface quality of SPSL degrade. By using a proper thickness and optimization of thermal annealing
good optical properties of SPSL with higher N content in the superlattice are achieved. The samples show an absorption edge of around 1 eV. The p-i-n solar cell using the optimized SPSL as the active region was fabricated. The short-circuit current density of the device reaches 10.23 mA/cm
2
. The ideality factor extrapolated by concentrator test of the p-i-n soalr cells is in good agreement with that of
J-V
curves under darkness.
关键词
Keywords
references
Law D C, King R R, Yoon H, et al. Future technology pathways of terrestrial Ⅲ-Ⅴ multijunction solar cells for concentrator photovoltaic systems [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(8):1314-1318.
King R R, Law D C, Edmondson K M, et al. 40% Efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells [J]. Appl. Phys. Lett., 2007, 90(18):183516-1-3.
Kurtz S R, Myers D, Olson J M. Projected performance of three- and four-junction devices using GaAs and GaInP //26th IEEE Photovoltaic Specialists Conference (PVSC), Anaheim: IEEE, 2011:526-529 .
Mair R A, Lin J Y, Jiang H X, et al. Time-resolved photoluminescence studies of InxGa1-xAs1-y Ny [J]. Appl. Phys. Lett., 2000, 76(1):188-190.
Yuen H. High efficiency solar cells at solar junction //Proceeding of Renewable Energy and The Environment, Texas: Optical Society of America, 2011:SRWD3.
Oshima R, Huang J, Miyashita N, et al. Transmission electron microscopy study of GaInNAs(Sb) thin films grown by atomic hydrogen-assisted molecular beam epitaxy [J]. Appl. Phys. Lett., 2011, 99(19):191907-1-3.
Kong X, Trampert A, Tournie E, et al. Decomposition in as-grown (Ga,In)(N,As) quantum wells [J]. Appl. Phys. Lett., 2005, 87(17):171901-1-3.
Jalili Y S, Stavrinou P N, Parry G. GaAs-based Ⅲ-Ny-V1-y active regions based on short-period super-lattice structures [J]. Semicond. Sci. Technol., 2008, 23(12):125016-1-6.
Miyamoto T, Sato S, Pan Z, et al. GaNAs/GaInAs short-period superlattice quantum well structures grown by MOCVD using TBAs and DMHy [J]. Cryst. Growth, 1998, 195:421.
Tu C W. Ⅲ-N-V low-bandgap nitrides and their device applications [J]. J. Phys., 2001, 13(32):7169-7182.
Okada Y, Kobayashi N, Sasaki N. Improvement of below-bandgap photoabsorption in GaAs solar cells using GaAs/GaNAs/InGaAs quantum wells //4th IEEE Photovoltaic Specialists Conference (PVSC), Waikoloa: IEEE, 2006:865-868.
Wu P H, Su Y K, Yen C T, et al. A novel GaAsN/InGaAs strain-compensated multi-quantum wells solar cell [J]. Semicond. Sci. Technol., 2007, 22(5):549-552.
Gao K, Prucnal S, Skorupa W, et al. Formation and photoluminescence of GaAs1-xNx dilute nitride achieved by N-implantation and flash lamp annealing [J]. Appl. Phys. Lett., 2014, 105(1):012107-1-4.
Nuytten T, Hayne M, Bansal B, et al. Charge separation and temperature-induced carrier migration in Ga1-xInxNyAs1-y multiple quantum wells [J]. Phys. Rev. B, 2011, 84(4):1-8.
Liu H F, Chua S J, Xiang N. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs(100) grown by molecular beam epitaxy [J]. J. Appl. Phys., 2007, 102(1):013504-1-4.
Reason M, Rudawski N G, Mckay H A, et al. Mechanisms of GaAsN growth: Surface and step-edge diffusion [J]. J. Appl. Phys., 2007, 101(8):083520-1-5.
Rapcewicz K, Chen B, Yakobson B, et al. Consistent methodology for calculating surface and interface energies [J]. Phys. Rev. B, 1998, 57(12):7281-7291.
Zhang H, Ren F, Hong M, et al. Structure and growth mechanism of V/Ag multilayers with different periodic thickness fabricated by magnetron sputtering deposition [J]. J. Mater. Sci. Technol., 2014, 30(10):1012-1019.
Yudo T, Tsuchiya H, Ando H, et al. Damage due to nitrogen molecular ions of GaN heteroepitaxial layers grown on Si(001) substrates by molecular beam epitaxy assisted by electron cyclotron resonance [J]. Jpn. J. Appl. Phys., 2000, 39:2523-2528.
Lin M E, Sverdlov B, Zhou C L, et al. Refractive indices of wurtzite and zincblende GaN [J]. Appl. Phys. Lett., 1993, 62(20):3479-3481.
Varshni Y P. Temperature dependence of the energy gap in semiconductors [J]. Physica, 1967, 34:149-154.
Sellers I R, Tan W S, Smith K, et al. Wide depletion width of 1 eV GaInNAs solar cells by thermal annealing [J]. Appl. Phys. Lett., 2011, 99(15):151111-1-3.
Miyashita N, Ahsan N, Islam M, et al. Study on the device structure of GaInNAs(Sb) based solar cells for use in 4-junction tandem solar cells //38th IEEE Photovoltaic Specialists Conference (PVSC), Austin: IEEE, 2012:954-956.
Miyashita N, Ahsan N, Islam M, et al. Evaluation of GaInNAs(Sb) solar cells for use in next generation Ⅲ-Ⅴ tandem solar cells //37th IEEE Photovoltaic Specialists Conference (PVSC), Seattle: IEEE, 2011:526-529.
Ng T K, Yoon S F, Tan K H, et al. 1 eV GaNxAs1-x-ySby material for lattice-matched Ⅲ-Ⅴ solar cell implementation on GaAs and Ge //34th IEEE Photovoltaic Specialists Conference (PVSC), Philadelphia: IEEE, 2009:76-80.