SHI Xin, XU Jian-ping, LI Lin-lin etc. Photoelectrochemical Properties of TiO<sub>2</sub> Nanorod Arrays Loaded with Carbon Quantum Dots[J]. Chinese Journal of Luminescence, 2015,36(8): 898-905
SHI Xin, XU Jian-ping, LI Lin-lin etc. Photoelectrochemical Properties of TiO<sub>2</sub> Nanorod Arrays Loaded with Carbon Quantum Dots[J]. Chinese Journal of Luminescence, 2015,36(8): 898-905 DOI: 10.3788/fgxb20153608.0898.
Photoelectrochemical Properties of TiO2 Nanorod Arrays Loaded with Carbon Quantum Dots
The photoelectrochemical (PEC) performance and photocatalytic activity of TiO
2
nanorod arrays (NRs) loaded with carbon quantum dots (CQDs) were investigated. In comparison with TiO
2
NRs
the absorption ability of TiO
2
NRs loaded with CQDs was enhanced. The transient photocurrent and open-circuit potential under visible light illumination were increased of 300% and 2.5%
respectively. After loaded with CQDs
the photocatalytic degradation efficiency of methylene blue (MB) under visible light illumination was increased from 25% to 33%. The electrochemical impedance spectra (EIS) and Mott-Schottky plots were measured to investigate the charge movement under the visible light illumination. The results suggest that the charge transfer resistance is reduced and the electron lifetime is increased for TiO
2
NRs loaded with CQDs. The loading of CQDs can induce the flat-band potential negative shift and the conduction band position raise
resulting in the enhancement of electron reduction properties.
关键词
Keywords
references
Chen C, Xie Y, Ali G, et al. Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer [J]. Nanotechnology, 2011, 22(1):015202-1-6.
Lai L H, Protesescu L, Kovalenko M V, et al. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots [J]. Phys. Chem. Chem. Phys., 2014, 16(2):736-742.
Wang J, Gao M, Ho G W. Bidentate-complex-derived TiO2/carbon dot photocatalysts: In situ synthesis, versatile heterostructures, and enhanced H2 evolution [J]. J. Mater. Chem. A, 2014, 2(16):5703-5709.
Wang G, Wang H, Ling Y, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting [J]. Nano Lett., 2011, 11(7):3026-3033.
Qi H F, Liu D B, Cheng B, et al. Ag antidot array modified TiO2 film and its photocatalysis performance [J]. Acta Phys. Sinica (物理学报), 2012, 61(22):228201-1-6 (in Chinese).
Yu L, Wang Z, Shi L, et al. Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays [J]. Appl. Catal. B: Environ., 2012, 113:318-325.
Wang M, Sun L, Lin Z, et al. p-n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities [J]. Energy Environ. Sci., 2013, 6(4):1211-1220.
Sang L, Tan H, Zhang X, et al. Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes, and resulting H2 generation rates [J]. J. Phys. Chem. C, 2012, 116(35):18633-18640.
Trevisan R, Rodenas P, Gonzalez-Pedro V, et al. Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based "quasi-artificial leaf" [J]. J. Phys. Chem. Lett., 2012, 4(1):141-146.
Lin Y, Li D, Hu J, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite [J]. J. Phys. Chem. C, 2012, 116(9):5764-5772.
Cheng X, Liu H, Chen Q, et al. Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism [J]. Carbon, 2014, 66:450-458.
Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications [J]. J. Mater. Chem. C, 2014, 2(34):6921-6939.
Sun M, Ma X, Chen X, et al. A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: Enhancing photoelectrochemical and photocatalytic properties [J]. RSC Adv., 2014, 4(3):1120-1127.
Enache-Pommer E, Boercker J E, Aydil E S. Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells [J]. Appl. Phys. Lett., 2007, 91(12):123116-1-3.
Wang F, Pang S, Wang L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents [J]. Chem. Mater., 2010, 22(16):4528-4530.
Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009, 131(11):3985-3990.
Yu H, Zhang H, Huang H, et al. ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature [J]. New J. Chem.,2012, 36(4):1031-1035.
Lei X F, Xue X X, Yang H, et al. Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials [J]. Appl. Surf. Sci., 2015, 332:172-180.
Zhang X, Wang F, Huang H, et al. Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light [J]. Nanoscale, 2013, 5(6):2274-2278.
Huang Q, Kang F, Liu H, et al. Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis [J]. J. Mater. Chem. A, 2013, 1(7):2418-2425.
Tian J, Zhang Q, Zhang L, et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells [J]. Nanoscale, 2013, 5(3):936-943.
Gao E, Wang W, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Phys. Chem. Chem. Phys., 2011, 13(7):2887-2893.