LIU Li-na, ZHANG Dong-mei, ZHANG Yong-sheng etc. Synthesis and Characterization of Core-shell Structured YVO<sub>4</sub> :Eu<sup>3+</sup>@SiO<sub>2</sub> Nanocomposites[J]. Chinese Journal of Luminescence, 2015,36(8): 882-887
LIU Li-na, ZHANG Dong-mei, ZHANG Yong-sheng etc. Synthesis and Characterization of Core-shell Structured YVO<sub>4</sub> :Eu<sup>3+</sup>@SiO<sub>2</sub> Nanocomposites[J]. Chinese Journal of Luminescence, 2015,36(8): 882-887 DOI: 10.3788/fgxb20153608.0882.
Synthesis and Characterization of Core-shell Structured YVO4 :Eu3+@SiO2 Nanocomposites
nanoparticles of about 8 nm were synthesized by precipitation reactions and coated with SiO
2
by a reverse microemulsion method. Powder X-ray diffraction (XRD) patterns indicate that these nanoparticles are purely tetragonal phase. Transmission electron microscope (TEM) images show that YVO
4
:Eu
3+
nanoparticles are successfully coated with silica to form core-shell structured nanocomposites. The thicknesses of SiO
2
shells can be altered by changing the volume of tetraethoxysilane (TEOS) used in the reaction. The ultraviolet-visible (UV-Vis) absorption spectra of YVO
4
:Eu
3+
@SiO
2
nanocomposites agree well with that of the YVO
4
:Eu
3+
nanoparticles colloid. Both the excitation and emission spectra are the same for YVO
4
:Eu
3+
nanoparticles and the nanocomposites. With the increasing of the thickness of SiO
2
shell
the intensity ratio of
5
D
0
-
7
F
2
/
5
D
0
-
7
F
1
decreases
indicating that SiO
2
shells can increase the local symmetry of Eu
3+
. All samples can emit bright red light under ultraviolet irradiation. The photoluminescence quantum yield decreases after SiO
2
coating. With the increasing of the thickness of SiO
2
shell
the photoluminescence quantum yield becomes lower and lower.
关键词
Keywords
references
Li Z Q, Wang L M, Wang Z Y, et al. Modification of NaYF4 :Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions [J]. J. Phys. Chem. C, 2011, 115(8):3291-3296.
Sahoo R, Roy A, Ray C, et al. Decoration of Fe3O4 base material with Pd loaded CdS nanoparticle for superior photocatalytic efficiency [J]. J. Phys. Chem. C, 2014, 118(21):11485-11494.
Channei D, Incesungvorn B, Wetchakun N, et al. Synthesis of Fe3O4/SiO2/CeO2 core-shell magnetic and their application as photocatalyst [J]. J. Nanosci. Nanotechnol., 2014, 14(10):7756-7762.
Yu H J, Lv Y Y, Ma K Y, et al. Synthesis of core-shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption [J]. J. Colloid Interf. Sci., 2014, 428:251-256.
Chung F C, Zhu Z, Luo P Y, et al. Au@ZnO core-shell structure for gaseous formaldehyde sensing at room temperature [J]. Sens. Actuators B, 2014, 199:314-319.
Wang H, Yu M, Lin C K, et al. Synthesis and luminescence properties of monodisperse spherical Y2O3 :Eu3+@SiO2 particles with core-shell structure [J]. J. Phys. Chem. C, 2007, 111(30):11223-11230.
Shang Y C, Yang P P, Wang W X, et al. Sol-gel preparation and characterization of uniform core-shell structured LaInO3 : Sm3+/Tb3+@SiO2 phosphors [J]. J. Alloys Compd., 2011, 509(3):837-844.
Liu T, Wang Y, Qin H, et al. Gd2O3 :Eu3+@mesoporous SiO2 bifunctional core-shell composites: Fluorescence label and drug release [J]. Mater. Res. Bull., 2011, 46(12):2296-2303.
Tu L P, Kong X G. Studies on the constructure based on luminescnece resonant energy transfer between NaYF4 :Yb,Er@ SiO2 nanostructure as donors and gold nanoparticle as acceptors [J]. Chin. J. Lumin.(发光学报), 2013, 34(2):149-153 (in Chinese).
Levine A K, Palilla F C. A new highly efficient red-emitting cathodoluminescent phosphor (YVO4 :Eu) for color television [J]. Appl. Phys. Lett., 1964, 5(6):118-120.
Huang X Y, Wang J X, Yu D C, et al. Spectral conversion for solar cell efficiency enhancement using YVO4 :Bi3+,Ln3+ (Ln=Dy, Er, Ho, Eu, Sm, and Yb) phosphors [J]. J. Appl. Phys., 2011, 109(11):113526-1-6.
Wang W X, Cheng Z Y, Yang P P, et al. Patterning of YVO4 :Eu3+ luminescent films by soft lithography [J]. Adv. Funct. Mater., 2011, 21(3):456-463.
Xu W, Bai X, Xu S, et al. Remarkable fluorescence enhancement in YVO4 :Eu3+@Ag nano-hybrids induced by interface effect [J]. RSC Advances, 2012, 2:2047-2054.
Yang P P, Quan Z W, Hou Z Y, et al. A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier [J]. Biomaterials, 2009, 30:4786-4795.
Hreniak D, Doskocz J, Gluchowski P, et al. Enhancement of luminescence properties of Eu3+ :YVO4 in polymeric nanocomposites upon UV excitation [J]. J. Lumin., 2011, 131:473-476.
Wang Y, Qin W P, Zhang J S, et al. Photoluminescence of colloidal YVO4 :Eu/SiO2 core/shell nanocrystals [J]. Opt. Commun., 2009, 282:1148-1153.
Zhang J, Wang Y H, Xu Z G, et al. Preparation and drug-delivery properties of hollow YVO4 :Ln3+ and mesoporous YVO4 : Ln3+@nSiO2@mSiO2 (Ln=Eu, Yb, Er, and Ho) [J]. J. Mater. Chem. B, 2013, 1:330-338.
Luwang M N, Ningthoujam R S, Srivastava S K, et al. Preparation of white light emitting YVO4 :Ln3+ and silica-coated YVO4 :Ln3+(Ln3+=Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies [J]. J. Mater. Chem., 2011, 21:5326-5337.
Huignard A, Buissette V, Laurent G, et al. Synthesis and characterizations of YVO4 :Eu colloids [J]. Chem. Mater., 2002, 14(5):2264-2269.
Liu L N, Tang C J, Zhang Y S, et al. Influence of SiO2 coating on morphology, phase and upconversion luminescence properties of NaYF4 :Yb3+,Er3+ submicrocubes during annealing [J]. J. Alloys Compd., 2014, 591:320-325.
Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles:YVO4 :Ln (Ln =Eu, Sm, Dy) [J]. J. Phys. Chem. B, 1998, 102(50):10129-10135.
Peng H X, Liu G X, Dong X T, et al. Preparation and characteristics of Fe3O4@YVO4 :Eu3+ bifunctional magnetic-luminescent nanocomposites [J]. J. Alloys Compd., 2011, 509:6930-6934.
Huignard A, Gacoin T, Boilot J P. Synthesis and luminescence properties of colloidal YVO4 :Eu phosphors [J]. Chem. Mater., 2000, 12(4):1090-1094.
Tang L, Gui W J, Ding K J J, et al. Ion exchanged YVO4 :Eu3+ nanocrystals and their strong luminescence enhanced by energy transfer of thenoyltrifluoroacetone ligands [J]. J. Alloys Compd., 2011, 590:277-282.
Wei Z, Sun L, Liao C, et al. Fluorescence intensity and color purity improvement in nanosized YBO3 :Eu [J]. Appl. Phys. Lett., 2002, 80(8):1447-1449.