浏览全部资源
扫码关注微信
1. 中南大学 先进材料超微结构与超快过程研究所,湖南 长沙,410083
2. Department of Physics and Astronomy, University of Rochester,, 27 Rochester,USA,NY146
Received:29 April 2015,
Revised:09 June 2015,
Published:03 August 2015
移动端阅览
吕路, 牛冬梅, 谢海鹏等. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩(C8-BTBT)与MoS<sub>2</sub>界面的能级匹配与薄膜生长[J]. 发光学报, 2015,36(8): 875-881
LYU Lu, NIU Dong-mei, XIE Hai-peng etc. Energy Level Bending and Molecular Packing Mode of 2,7-diocty[1]benzothieno[3,2-b] benzothiophene(C8-BTBT) on MoS<sub>2</sub>[J]. Chinese Journal of Luminescence, 2015,36(8): 875-881
吕路, 牛冬梅, 谢海鹏等. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩(C8-BTBT)与MoS<sub>2</sub>界面的能级匹配与薄膜生长[J]. 发光学报, 2015,36(8): 875-881 DOI: 10.3788/fgxb20153608.0875.
LYU Lu, NIU Dong-mei, XIE Hai-peng etc. Energy Level Bending and Molecular Packing Mode of 2,7-diocty[1]benzothieno[3,2-b] benzothiophene(C8-BTBT) on MoS<sub>2</sub>[J]. Chinese Journal of Luminescence, 2015,36(8): 875-881 DOI: 10.3788/fgxb20153608.0875.
结合紫外光电子能谱(UPS)、X射线光电子能谱(XPS)和原子力显微镜(AFM)等实验手段系统研究了C8-BTBT沉积在层状MoS
2
基底上的界面能级匹配、薄膜生长和分子取向.研究发现C8-BTBT分子竖直生长在MoS
2
上
生长过程中界面的真空能级(VL)、最高占据态轨道(HOMO)和电离能(IP)都出现了非常规的弯曲现象.这种能级弯曲行为可归因于直立分子从界面相到体相的转变过程中
其分子倾斜角(
)存在一定的渐变
这种渐变会在沿表面法线方向诱导出一系列的层间电偶极
最终导致能级的弯曲.同时
的变化也会改变薄膜的表面极化强度
引起IP的逐渐减小.能级的弯曲在界面处形成类P-N结的效应会对C8-BTBT基电子器件的性能有很大的影响.
The energy level alignment
film growth and molecular orientation of C8-BTBT on MoS
2
were studied by ultraviolet photoemission spectroscopy (UPS)
X-ray photoemission spectroscopy (XPS) and atomic force microscopy (AFM). The molecules adopt standing-up orientation on MoS
2
and the island growth mood were confirmed. The ionization potential (IP) decrease and highest occupied orbital (HOMO) down-shift were observed as the film thickness increased. IP decrease is ascribed to the gradual increase of the surface electric dipole pointing inwards when the molecular tilt angle (
) about the substrate normal decreases with the increasing of film thickness. The energy level shift results in an analogy P-N junction effect
which provides important guidance for C8-BTBT based electronic device design.
Shi F F. Developments in plasma-polymerized organic thin films with novel mechanical, electrical, and optical properties [J]. J. Macromol. Sci., Part C: Polymer Rev., 1996, 36(4):795-826.
Zhou Y, Peng J, Wang E, et al. A novel optical charge-transfer complex between an organic substrate and a polyoxometalate, -H6P2W18O626phen10H2O [J]. Trans. Met. Chem., 1998, 23(2):125-128.
Klauk H, Zschieschang U, Pflaum J, et al. Ultralow-power organic complementary circuits [J]. Nature, 2007, 445(7129):745-748.
Sanvito S. Molecular spintronics [J]. Chem. Soc. Rev., 2011, 40(6):3336-3355.
Facchetti A. Semiconductors for organic transistors [J]. Mater. Today, 2007, 10(3):28-37.
Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell [J]. Nat. Mater., 2005, 4(1):37-41.
Tang C W, VanSlyke S. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.
Koezuka H, Tsumura A, Ando T. Field-effect transistor with polythiophene thin film [J]. Synth. Met., 1987, 18(1):699-704.
Takeya J, Yamagishi M, Tominari Y, et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels [J]. Appl. Phys. Lett., 2007, 90(10):102120-1-3.
Yuan Y B, Giri G, Ayzner A L, et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method [J]. Nat. Commun., 2014, 5:3005-1-9.
Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2 [J]. ACS Nano, 2011, 5:9934-9938.
Wang H, Yu L L, Shi Y, et al. Integrated circuits based on bilayer MoS2 transistors [J]. Nano Lett., 2012, 12:4674-4680.
Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films [J]. Nature, 2011, 475(7356):364-367.
Liu C, Minari T, Lu X, et al. Solution-processable organic single crystals with band like transport in field-effect transistors [J]. Adv. Mater., 2011, 23(4):523-526.
Izawa T, Miyazaki E, Takimiya K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics [J]. Adv. Mater., 2008, 20(18):3388-3392.
He D, Zhang Y, Wu Q, et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors [J]. Nat. Commun., 2014, 5:5162-5190.
Cao N T, Zhang L, Lyu L, et al. Studies of van der Waals heterostructure about CuPc/MoS2(0001) [J]. Acta Phys. Sinica (物理学报), 2014, 63(16):167903-1-8 (in Chinese).
Hunter C A, Sanders J K. The nature of - interactions [J]. J. Am. Chem. Soc., 1990, 112(14):5525-5534.
Tsuzuki S. CH/ interactions [J]. Ann. Rep. Section C: Phys. Chem., 2012, 108:69-95.
Lifshits V, Oura K, Saranin A, et al. Surface Science: An Introduction [M]. Berlin: Springer-Verlag, 2003.
Soeda J, Hirose Y, Yamagishi M, et al. Solution-crystallized organic field-effect transistors with charge-acceptor layers: High-mobility and low-threshold-voltage operation in air [J]. Adv. Mater., 2011, 23(29):3309-3314.
Kobayashi H, Kobayashi N, Hosoi S, et al. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl
benzothiophene (C8-BTBT) from first principle calculations [J]. J. Chem. Phys., 2013, 139(1):014707-1-8.
Braun S, Salaneck W R, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces [J]. Adv. Mater., 2009, 21:1450-1472.
Peisert H, Knupfer M, Schwieger T, et al. Full characterization of the interface between the organic semiconductor copper phthalocyanine and gold [J]. J. Appl. Phys., 2002, 91(8):4872-4878.
Zhang L, Yang Y, Huang H, et al. Thickness-dependent air-exposure-induced phase transition of CuPc ultrathin films to well-ordered one-dimensional nanocrystals on layered substrates [J]. J. Phys. Chem. C, 2015, 119(8):4217-4223.
Yamane H, Yabuuchi Y, Fukagawa H, et al. Does the molecular orientation induce an electric dipole in Cu-phthalocyanine thin films? [J]. J. Appl. Phys., 2006, 99(9):093705-1-5.
Zhong J Q, Mao H Y, Wang R, et al. Effect of gap states on the orientation-dependent energy level alignment at the DIP/F16CuPc donor-acceptor heterojunction interfaces [J]. J. Phys. Chem. C, 2011, 115:23922-23928.
Duhm S, Heimel G, Salzmann I, et al. Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies [J]. Nat. Mater., 2008, 7(4):326-332.
0
Views
28
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution