浏览全部资源
扫码关注微信
1. 上海大学 新型显示技术及应用集成教育部重点实验室 上海,200072
2. 桂林电子科技大学 机电工程学院,广西 桂林,541004
Received:03 April 2015,
Revised:28 April 2015,
Published Online:08 May 2015,
Published:03 July 2015
移动端阅览
林洋, 张静, 蔡苗等. 有机电致发光二极管散热机理模拟研究[J]. 发光学报, 2015,36(7): 841-845
LIN Yang, ZHANG Jing, CAI Miao etc. Numerical Study of Heat Dissipation Model for Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2015,36(7): 841-845
林洋, 张静, 蔡苗等. 有机电致发光二极管散热机理模拟研究[J]. 发光学报, 2015,36(7): 841-845 DOI: 10.3788/fgxb20153607.0841.
LIN Yang, ZHANG Jing, CAI Miao etc. Numerical Study of Heat Dissipation Model for Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2015,36(7): 841-845 DOI: 10.3788/fgxb20153607.0841.
研究了有机电致发光二极管(OLEDs)工作过程中的生热与热传输机制。OLEDs器件产热由载流子复合产生
散热渠道主要由热辐射、对流两部分构成。基于传热学理论计算
发现发光亮度为1 000 cd/m
2
时
发光占输入功率的15%
热辐射占30%
热对流占55%
器件温度上升了39.4 ℃
并且计算结果与实验数据有良好的匹配。决定器件工作温度的因素有环境、材料、工作功率等。具有不同发光材料的OLEDs器件
其亮度衰减速率不同。
The heat generation and heat transfer mechanisms of organic light-emitting diodes (OLEDs) were investigated. Heat is generated in the carrier recombination and then dissipated by thermal radiation and convection. Based on theoretical calculations of heat transfer
we find that at the case of the luminance of 1 000 cd/m
2
15% of the input power is converted to light
while 30% and 55% of the input power are converted to heat by thermal radiation and convection
respectively. The calculated temperature rise of the device is 39.4 ℃ which fits well with the measured value of 39.3 ℃. The factors affecting the temperature of OLEDs are ambient temperature
materials and input power. The brightness of OLEDs decays at different rates for different light-emitting materials.
Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic [J]. Nat. Photon., 2011, 5(12):753-757.
Chen M, Zhang L, Lin H, et al. Performance optimization of top-emitting OLED based PEN flexible substrate with microwave [J]. J. Optoelectron. Laser (光电子激光), 2012, 23(6):1063-1066 (in Chinese).
Ding L, Zhang F H, Li Y F, et al. High saturated blue phosphorscent organic lighting emitting devices [J]. J. Optoelectron. Laser (光电子激光), 2011, 22(11):1615-1620 (in Chinese).
Nakayama T, Hiyama K, Furukawa K, et al. Development of phosphorescent white OLED with extremely high power efficiency and long lifetime [J]. SID Symposium Digest Technical Papers, 2007, 38(1):1018-1021.
Zhou T X, Ngo T, Brown J J, et al. Stable and efficient electrophosphorescent organic light-emitting devices grown by organic vapor phase deposition [J]. Appl. Phys. Lett., 2005, 86(2):021107-1-3.
Ichikawa M, Kawaguchi T, Kobayashi K, et al. Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecular materials [J]. J. Mater. Chem., 2006, 16(2):221-225.
Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys., 1994, 75(3):1656-1666.
Zhang X W, Xu J W, Wang H, et al. Optimizing structure for constructing a highly efficient inverted top-emitting organic light-emitting diode with stable electroluminescent spectra [J]. J. Semicond., 2014, 35(2):023002-1-3.
Book K, Bssler H, Nikitenko V R, et al. Transient behavior of charge carriers in multilayer organic light-emitting diodes: Experiment and theory [J]. Synth. Met., 2000, 111-112:263-267.
Song C L, Xu Y, Zhou H F, et al. Synthesis and properties of a novel type of red-light organic electroluminescence material [J]. Chin. J. Lumin.(发光学报), 2011, 32(3):285-289 (in Chinese).
Stefano T. Lighting technology: Time to change the bulb [J]. Nature, 2009, 459(3):312-314.
Zhou M J, Zhong G Y, He J, et al. Joule heating effect and organic decomposition in organic light-emitting diodes [J]. Chin. J. Semicond.(半导体学报), 2001, 22(8):1048-1051 (in Chinese).
Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357(6378):477-479.
Nenna G, Flaminio G, Fasolino T, et al. A study on thermal degradation of organic LEDs using IR imaging [J]. Macromol. Symp., 2007, 247(1):326-332.
Vamvounis G, Aziz H, Hu N X, et al. Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers [J]. Synth. Met., 2004, 143(1):69-73.
Tsuji H, Oda A, Kido J, et al. Temperature measurements of organic light-emitting diodes by Stokes and anti-Stokes Raman scattering [J]. Jpn. J. Appl. Phys., 2008, 47(4):2171-2173.
Chung S, Lee J H, Jeong J, et al. Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes [J]. Appl. Phys. Lett., 2009, 94(25):253302-1-3.
Li Y T, Song X F, Chen J L, et al. Encapsulation's thermal characteristics for organic electroluminescent devices [J]. Acta Opt. Sinica (光子学报), 2011, 40(11):1630-1635 (in Chinese).
Yang L Q, Fu M J, Wei B, et al. Thermal analysis and thermal design of organic light-emitting diode [J]. Chin. J. Lumin.(发光学报), 2012, 33(6):624-627 (in Chinese).
Yang L Q, Wang L, Chen W, et al. Thermal analysis of organic light-emitting diode based on IR thermal imaging and transient electrical test [J]. J. Optoelectron. Laser (光电子激光), 2013, 24(7):1258-1262 (in Chinese).
Luo Y, Wei T W, Tang Z W, et al. The design research of single-chip high power LED radiator [J]. Appl. Mech. Mater., 2011, 103(9):219-224.
Zhang F T, Tang Z A, Gao R J, et al. Design and thermal analysis of gas pressure sensor with micro-hotplate [J]. Opt. Precision Eng.(光学 精密工程), 2004, 12(6):598-602 (in Chinese).
Li J S, Wang T, Huang Z W. Temperature field analysis of stacked chip in turbulence model [J]. Modern Electron. Tech. (现代电子技术), 2014, 37(5):134-136 (in Chinese).
Wang W J, Lee T H, Choi J H, et al. Thermal investigation of GaN-based laser diode package [J]. IEEE Trans. Compon. Packag. Technol., 2007, 30(4):637-642.
0
Views
159
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution