(SFTO) transparent conductive oxide films were prepared by ion-assisted electron beam deposition at a low temperature. The films show electrical resistivity of less than 3.910
-3
cm
high average optical transmittance of 85% from 380 nm to 2 500 nm
and high work function of about 5.1 eV. The films are amorphous and have favorable surface morphology with average roughness of about 1.5 nm. The deposition temperature of SFTO film is 300 ℃
which is much lower than that of FTO products. SFTO transparent conductive amorphous thin film can be expected to be directly prepared on flexible plastic (PI
PAR or PCO) substrate
in order to obtain flexible electrodes with good performance.
关键词
Keywords
references
Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.
Major S, Chopra K L. Indium-doped zinc oxide films as transparent electrodes for solar cells [J]. Sol. Energy Mater., 1988, 17(5):319-327.
Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48(2):183-185.
Xiang C, Koo W, So F, et al. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices [J]. Light: Sci. Appl., 2013, 2(6):e74.
Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors [J]. Appl. Phys. Lett., 2003, 82(5):733-735.
Song Q M, Lyu M C, Tan X, et al. Influence of H/Al co-doping on eletrical and optical properties and crystal structure of ZnO-based transparent conducting films [J]. Chin. J. Lumin.(发光学报), 2014, 35(4):393-398 (in Chinese).
Gu W, Xu T, Shi J F, et al. Effect of the film thickness on the performance of GZO transparent conductive layer and LEDs with GZO electrode [J]. Chin. J. Lumin.(发光学报), 2013, 34(8):1022-1027 (in Chinese).
Lewis B G, Paine D C. Applications and processing of transparent conducting oxides [J]. MRS Bull., 2000, 25(8):22-27.
Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes [J]. Nat. Photon., 2012, 6(12):808-816.
Helander M G, Wang Z B, Qiu J, et al. Chlorinated indium tin oxide electrodes with high work function for organic device compatibility [J]. Science, 2011, 332(6032):944-947.
Liao Y, Lu Q, Fan Y, et al. Manganese-doped indium oxide and its application in organic light-emitting diodes [J]. Appl. Phys. Lett., 2011, 99(2):023302-1-3.
Adamovich V I, Cordero S R, Djurovich P I, et al. New charge-carrier blocking materials for high efficiency OLEDs [J]. Org. Electron., 2003, 4(2):77-87.
Greiner M T, Helander M G, Tang W M, et al. Universal energy-level alignment of molecules on metal oxides [J]. Nat. Mater., 2012, 11(1):76-81.
Shen Y, Jacobs D, Malliaras G, et al. Modification of indium tin oxide for improved hole injection in organic light emitting diodes [J]. Adv. Mater., 2001, 13(16):1234-1238.
Lo M F, Ng T W, Mo H W, et al. Direct threat of a UV-ozone treated indium-tin-oxide substrate to the stabilities of common organic semiconductors [J]. Adv. Funct. Mater., 2013, 23(13):1718-1723.
Minami T. New n-type transparent conducting oxides [J]. MRS Bull., 2000, 25(8):38-44.
Andersson A, Johansson N, Brms P, et al. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs [J]. Adv. Mater., 1998, 10(11):859-863.
Wu S, Li Y, Luo J, et al. Pr and F co-doped SnO2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation [J]. Opt. Express, 2014, 22(4):4731-4737.
Burstein E. Anomalous optical absorption limit in InSb [J]. Phys. Rev., 1954, 93(3):632-633.
Moss T S. The interpretation of the properties of indium antimonide [J]. Proc. Phys. Soc. B, 1954, 67(10):775-782.
Coutts T J, Young D L, Li X. Characterization of transparent conducting oxides [J]. MRS Bull., 2000, 25(8):58-65.
Consonni V, Rey G, Roussel H, et al. Preferential orientation of fluorine-doped SnO2 thin films: The effects of growth temperature [J]. Acta Mater., 2013, 61(1):22-31.
Zhang D H, Ma H L. Scattering mechanisms of charge carriers in transparent conducting oxide films [J]. Appl. Phys. A, 1996, 62(5):487-492.
Hosono H, Yasukawa M, Kawazoe H. Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides [J]. J. Non-Cryst. Solids, 1996, 203:334-344.
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016):488-492.
Macdonald W A. Engineered films for display technologies [J]. J. Mater. Chem., 2004, 14(1):4-10.
Photodetectors Based on A 2D/3D Hybrid Tin Perovskite/SnO2 Heterojunction
Influence of Zn Doped SnO2 Nanocrystals as Photoanode Materials on Photoelectric Performance of Dye-sensitized Solar Cells
Effect of Surface Decoration of CH3NH3PbBr3 on Performance of SnO2-based Photodetector
Self-assembled Channel Transparent Thin-film Transistors Based on Sb2O3/Ag/Sb2O3 Multilayer Transparent Conductive Films
Related Author
LYU Jianguo
YU Tao
LIU Rumin
HU Dunan
YANG Ruqi
SHI Junda
HU Yue
SU Zi-sheng
Related Institution
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University
College of Chemical Engineering and Material, Quanzhou Normal University
Fujian Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, College of Physics and Information Engineering, Quanzhou Normal University