浏览全部资源
扫码关注微信
1. 天津理工大学 材料物理所 天津,300384
2. 天津理工大学 天津光电显示材料与器件重点实验室 天津,300384
Received:20 April 2015,
Revised:14 May 2015,
Published:03 July 2015
移动端阅览
邹润秋, 秦文静, 张强等. 银纳米片等离子体效应增强有机太阳能电池及其性能优化研究[J]. 发光学报, 2015,36(7): 788-794
ZOU Run-qiu, QIN Wen-jing, Zhang Qiang etc. Mechanism of Surface Plasmon Enhancement in Polymer Solar Cells with Ag Nanoprisms[J]. Chinese Journal of Luminescence, 2015,36(7): 788-794
邹润秋, 秦文静, 张强等. 银纳米片等离子体效应增强有机太阳能电池及其性能优化研究[J]. 发光学报, 2015,36(7): 788-794 DOI: 10.3788/fgxb20153607.0788.
ZOU Run-qiu, QIN Wen-jing, Zhang Qiang etc. Mechanism of Surface Plasmon Enhancement in Polymer Solar Cells with Ag Nanoprisms[J]. Chinese Journal of Luminescence, 2015,36(7): 788-794 DOI: 10.3788/fgxb20153607.0788.
将银纳米片引入有机太阳能电池
增强了器件的光吸收及光电转换效率。制备得到了具有不同等离子共振吸收特性的银纳米片。当银纳米片的等离子共振吸收与活性层的吸收相匹配时
器件的光电流显著增强。通过改变银纳米片与活性层之间的距离
研究了等离子体共振增强电磁场的传递特性。两者的距离越近则耦合入活性层的电磁场越强
器件的光电流越高。经优化后
以P3HT:PCBM为活性层的有机太阳能电池的光电转换效率由3.04%增长到3.82%
提高了26%。
Ag nanoprisms (AgNPs) were introduced in polymer solar cells to improve the light absorption and performance. By changing the size and morphology of AgNPs
different plasmonic resonance characteristics were obtained. The device with good spectral overlap between AgNPs SPRs and active layer exhibited the highest photocurrent. The influence of electromagnetic scattering by AgNPs in the polymer solar cell was further investigated by changing the thickness of PEDOT:PSS buffer layer. It is found that more local electromagnetic near-fields couple to the photoactive layer with the decreasing of the thickness of PEDOT:PSS layer. By optimizing the thickness of PEDOT:PSS buffer layer and the spectral overlap between Ag nanoprisms and active layer
the power conversion efficiency of polymer solar cells with a structure of ITO/AgNPs/PEDOT:PSS/P3HT:PCBM/LiF/Al is raised to 3.82%
which is 1.26 times than that of the control device without AgNPs layer.
Tian M M, Li C J, He X G, et al. Preparation and characteristic of organic solar cells based on novel transparent conducting oxides [J]. Chin. J. Lumin.(发光学报), 2013, 34(2):192-196 (in Chinese).
Li W M, Guo J C, Zhou B. Solvent evaporation time dependent recombination properties in bulk heterojunction organic solar cells [J]. Chin. J. Lumin.(发光学报), 2015, 36(4):437-442 (in Chinese).
Mohamed Z, Lucas A H, Gordon J, et al. Organic solar cells [J]. Neut. Appl. Mater. Energy, 2015, 1:109-135.
Qiao L F, Dan W, Zuo L J, et al. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres[J]. Appl. Energy, 2011, 88(3):848-852.
You J B, Dou L T, Ken Y, et al. A polymer tandem solar cell with 10.6% power conversion efficiency [J]. Nat. Commun., 2012, 4:1446-1451.
Johannes K, Tobias S, Moses R, et al. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices [J]. Adv. Funct. Mater., 2013, 23:1711-1717.
Hou J H, Chen Y, Zhang S, et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells [J]. J. Am. Chem. Soc., 2009, 131(43):15586-15587.
Lindquist N C, Luhman W A, Oh S H, et al. Plasmonic nanocavity arrays for enhanced efficiency in organic photovltaic cells [J]. Appl. Phys. Lett., 2008, 93(12):123308-1-3.
Fan S Q, Fang B, Kim J H, et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells [J]. Langmuir, 2010, 26:13644-13649.
Seol M, Kim H, Tak Y, et al. Novel nanowire array based highly efficient quantum dot sensitized solar cell [J]. Chem. Commun., 2010, 46:5521-5526.
Law M, Greene L E, Johonson J C, et al. Nanowire dye-sensitized solar cells [J]. Nat. Mater., 2005, 4:455.
Yun S J, Hans D R, Mikhail I K. Modeling electronic structure and transport properties of graphene with resonnat scattering centers [J]. Phys. Rev. B, 2010, 82(11):115448-1-7.
Nafiseh S, Nima T, Azam I. Fabraication of silver microspheres as metallic scattering centers in dye-sensitized solar cells: Light harvesting [J]. J. Energy, 2012, 2(2):21-27.
Javis A N, Oliver W, Andrea P, et al. Optical path length calibration: A standard approch for use in absorption cell-based IR-spectrometric gas analysis [J]. Int. J. Spectrosc., 2014, 9(13):132607-1-7.
Sandu T, Boldeiu G. How shape affects plasmonic properties of metallic nanosperes [J]. Digest J. Nanomater. Bio., 2014, 9(3):1255-1262.
Ye X C, Fei J Y, Benjamin T D, et al. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping [J]. J. Am. Chem. Soc., 2014, 5(3):9903-9907.
Catchpole K, Polman A. Design principles for particle plasmon enhanced solar cells [J]. Appl.Phys. Lett., 2008, 93(19):191113-1-3.
Harry A A, Albert P. Plasmonic for improvced photovoltaic devices [J]. Nat. Mater., 2010, 9:205-210.
Li X H, Wallace C H, Haifei L, et al. Efficiency enhancement of organic solar cells by using shape-denpendant broadband plasmonic absorption in metallic nanoparticles [J]. Adv. Funct. Mater., 2013, 2:476-480.
Abbaszadeh D, Wetzelaer G A H, Nicolai H T, et al. Exciton quenching at PEDOT:PSS anode in ploymer blue-light-emitting diodes [J]. J. Appl. Phys., 2014, 116(22):224508-1-6.
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices [J]. Nat. Mater., 2010, 9(3):205-210.
Du P, Jing P T, Li D, et al. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells [J]. Small, 2015, 2:757-762.
Hark S N, Eun H C, Hyo M K, et al. Organic solar cells using plasmonics of Ag nanoprisms [J]. Org. Electron., 2013, 14:278-285.
0
Views
243
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution