DING Yi, FANG Hui, ZHANG Feng-jun etc. Preparation of La<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> by A Simple Microemulsion Method and Its Photoluminescence Properties[J]. Chinese Journal of Luminescence, 2015,36(7): 775-781
DING Yi, FANG Hui, ZHANG Feng-jun etc. Preparation of La<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> by A Simple Microemulsion Method and Its Photoluminescence Properties[J]. Chinese Journal of Luminescence, 2015,36(7): 775-781 DOI: 10.3788/fgxb20153607.0775.
Preparation of La2(MoO4)3 by A Simple Microemulsion Method and Its Photoluminescence Properties
micro-materials with different morphologies were prepared by microemulsion reaction of sodium molybdate (Na
2
MoO
4
2H
2
O) and lanthanum nitrate(La(NO
3
)
3
6H
2
O) under the help of micro emulsion system. The morphology of La
2
(MoO
4
)
3
samples gradually transform from oval shape to close spherical shape with the concentration of the surfactant of CTAB increasing from 0.2 mol/L to 0.4 mol/L. Under 396 nm excitation
La
2
(MoO
4
)
3
:Eu
3+
samples calcined at 800 ℃ for 4 h emit 617 nm red light due to the forced electric dipole transition of
5
D
0
7
F
2
. The emission is strongest when the mole fraction of Eu
3+
is up to 20%.
关键词
Keywords
references
Shahri Z, Sobhani A, Salavati-Niasari M. Controllable synthesis and characterization of cadmium molybdate octahedral nanocrystals by coprecipitation method [J]. Mater. Res. Bull., 2013, 48(10):3901-3909.
Wu Q, Li H Y, Xia W W, et al. Investigation of the structure and photoluminescence properties of Ln3+(Eu3+, Dy3+, Sm3+) ion-doped NaY(MoO4)2 [J]. J. Electrochem. Soc., 2011, 158(12):J387-J393.
Gong Q, Qian X F, Cao H L, et al. Novel shape evolution of BaMoO4 microcrystals [J]. J. Phys. Chem. B, 2006, 110(39):19295-19299.
Mao Y B, Banerjee S, Wong S S. Large-scale synthesis of single-crystalline perovskite nanostructures [J]. J. Am. Chem. Soc., 2003, 125(51):15718-15719.
Shi H T, Qi L M, Ma J M, et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles [J]. J. Am. Chem. Soc., 2003, 125(12):3450-3451.
Clfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J]. Angew. Chem. Int. Ed., 2005, 44(35):5576-5591.
Gao H L, Xu L, Long F, et al. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating [J]. Angew. Chem. Int. Ed., 2014, 53(18):4561-4566.
Chen D Q, Wang Y S. Impurity doping: A novel strategy for controllable synthesis of functional lanthanidenanomaterials [J]. Nanoscale, 2013, 5(11):4621-4637.
Hou Y L, Kondoh H, Ohta T. Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization [J]. Chem. Mater., 2005, 17(15):3994-3996.
Cheng Y, Wang Y S, Chen D Q, et al. Evolution of single crystalline dendrites from nanoparticles through oriented attachment [J]. J. Phys. Chem. B, 2005, 109(2):794-798.
Tang Z Y, Ozturk B, Wang Y, et al. Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains [J]. J. Phys. Chem. B, 2004, 108(22):6927-6931.
Liu B, Yu S H, Li L J, et al. Morphology control of stolzite microcrystals with high hierarchy in solution [J]. Angew. Chem. Int. Ed., 2004, 43(36):4745-4750.
Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots [J]. Science, 2000, 290(5490):314-317.
Phillips J. Evaluation of the fundamental properties of quantum dot infrared detectors [J]. J. Appl. Phys., 2002, 91(7):4590-4594.
Yang P, Lu M K, Xu D, et al. Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+ [J]. Chem. Phys. Lett., 2001, 336(1-2):76-80.
Duan F, Zheng Y, Chen M Q. Enhanced photocatalytic activity of bismuth molybdate via hybridization with carbon [J]. Mater. Lett., 2011, 65(2):191-193.
Zhu Y Q, Liu H L, Yang L B, et al. Study on the synthesis of Ag/AgCl nanoparticles and their photocatalytic properties [J]. Mater. Res. Bull., 2012, 47(11):3452-3458.
Phuruangrant A, Thongtem T, Thongteme S. Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate [J]. J. Alloys Compd., 2009, 481(1-2):568-572.
Gates S D, Lind C. Polymorphism in yttrium molybdate Y2Mo3O12 [J]. J. Solid State Chem., 2007, 180(12):3510-3514.
Wan H Z, Jiang J J, Ji X, et al. Rapid microwave-assisted synthesis NiMoO4H2O nanoclusters for supercapacitors [J]. Mater. Lett., 2013, 108(1):164-167.
Tian Y, Qi X H, Wu X W, et al. Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method [J]. J. Phys. Chem. C, 2009, 113(24):10767-10772.
Pan Y X, Zhang Q Y. White upconverted luminescence of rare earth ions codoped Gd2(MoO4)3 nanocrystals [J]. Mater. Sci. Eng. B, 2007, 138(1):90-94.
Prewitt C T. X-ray diffraction study of Gd2(MoO4)3 [J]. Solid State Commun., 1970, 8(23):2037-2040.
Liu C X. Synthesis and luminescence properties of La1.6(MoO4)3:Eu3+0.4 nanocrystal [J]. Chin. Opt.(中国光学), 2014, 7(6):931-935 (in Chinese).
Li X, Xu J Y, Wang R F, et al. Preparation and luminescent properties of Sr(1-1.5x)Mo0.8Si0.2O3.8:Eu3+x powder for LED application [J]. Chin. J. Appl. Chem.(应用化学), 2011, 28(12):1393-1396 (in Chinese).
Xu L, Lu C L, Zhang Z H, et al. Various self-assembled three-dimensional hierarchical architectures of La2(MoO4)3: Controlled synthesis, growth mechanisms, luminescence properties and adsorption activities [J]. Nanoscale, 2012, 2(6):995-1005.
Masteri-Farahari M, Mahdavi S, Rafizadch M. Microemulsion-mediated synthesis and characterization of monodispersed nickel molybdate nanocrystals [J]. Ceram. Int., 2013, 39(4):4619-4625.
Xu L, Yang X Y, Zhai Z, et al. Self-assembled 3D architectures of NaCe(MoO4)2 and their application as absorbents [J]. Cryst. Eng. Comm., 2012, 14(21):7330-7337.
Li W J, Shi E W, Yin Z W, et al. Growth mechanism and growth habit of crystals [J]. J. Synth. Cryst.(人工晶体学报), 2001, 30(3):232-241 (in Chinese).
Yin Y D, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature, 2005, 437(7059):664-670.
Gong Q, Qian X F, Ma X D, et al. Large-scale fabrication of novel hierarchical 3D CaMoO4 and SrMoO4 mesocrystals via a microemulsion-mediated route [J]. Cryst. Growth Des., 2006, 6(8):1821-1825.
Wang R, Xu J, Chen C. Fabrication and luminescent properties of Sr3B2O6:Eu3+, Na+ phosphor for white LED applications [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1099-1103 (in Chinese).
Ren L J, Du X Q, Lei X H, et al. Effect of Dy3+ content on luminescent properties of Eu2+, Dy3+ co-doped high silica luminescence glass [J]. Chin. J. Lumin.(发光学报), 2012, 33(11):1161-1165 (in Chinese).
Gu J, Zhu Y C, Li H B, et al. Uniform Ln3+ (Eu3+, Tb3+) doped NaLa(WO4)2 nanocrystals: Synthesis, characterization, and optical properties [J]. J. Solid State Chem., 2010, 183(3):497-503.
He X H, Guan M Y, Lian N, et al. Synthesis and luminescence characteristic of K2Bi(PO4)(MO4):Eu3+(M=Mo, W) red-emitting phosphor for white LEDs [J]. J. Alloys Compd., 2010, 492(1-2):452-455.
Sun L, Zhang Y, Hu X K, et al. Synthesis and photoluminescence properties of KZn4(BO3)3:Eu3+ red-emitting phosphor [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2014, 29(6):893-900 (in Chinese).
Zhang L H, Zhong H Y, Li X P, et al. Solid state reaction synthesis and luminescence properties of Dy3+ doped Gd2Mo3O9 phosphor [J]. Physica B, 2012, 407(1):68-72.
Chen L, Liu R H, Zhuang W D, et al. Effect of Eu2+ concentration on the thermal quenching mechanism of Sr2Si5N8:Eu2+ red phosphors [J]. Chin. J. Lumin.(发光学报), 2015, 36(4):371-376 (in Chinese).