浏览全部资源
扫码关注微信
集成光电子学国家重点联合实验室吉林大学实验区 吉林大学电子科学与工程学院,吉林 长春,130012
Received:19 April 2015,
Revised:16 May 2015,
Published:03 July 2015
移动端阅览
张佳楠, 常开文, 李琼等. 半导体聚合物纳米荧光探针的制备及生物应用研究进展[J]. 发光学报, 2015,36(7): 725-737
ZHANG Jia-nan, CHANG Kai-wen, LI Qiong etc. Preparation, Regulation and Biological Application of Fluorescent Semiconducting Polymer Dots[J]. Chinese Journal of Luminescence, 2015,36(7): 725-737
张佳楠, 常开文, 李琼等. 半导体聚合物纳米荧光探针的制备及生物应用研究进展[J]. 发光学报, 2015,36(7): 725-737 DOI: 10.3788/fgxb20153607.0725.
ZHANG Jia-nan, CHANG Kai-wen, LI Qiong etc. Preparation, Regulation and Biological Application of Fluorescent Semiconducting Polymer Dots[J]. Chinese Journal of Luminescence, 2015,36(7): 725-737 DOI: 10.3788/fgxb20153607.0725.
半导体聚合物作为功能有机高分子材料被广泛应用于有机光电子器件领域的研究。近年来由半导体聚合物构成的荧光纳米粒子引起了广泛的研究兴趣。这类新型纳米探针具有光学吸收截面大、量子效率高、辐射跃迁速率快、光稳定性好等特性
在荧光成像和生物传感等领域获得了重要应用。本文简要概述了近年来半导体聚合物纳米粒子的研究进展
包括其光物理性质、表面功能化以及在细胞标记、体内成像、生物传感、单粒子示踪、药物输送和光动力学疗法等领域的应用。
In recent years
fluorescent semiconducting polymer nanoparticles
which primarily consist of -conjugated polymers
have been attracted considerable attention in an extensive range of applications
such as fluorescence imaging and biosensing. These -conjugated polymer nanoparticles are called polymer dots (Pdots) when they have particle size comparable to that of the inorganic quantum dots. Pdots have many charming properties
such as large absorption cross section
high fluorescence quantum yield
very fast emission rates
excellent photostability
and so on. In this review
we briefly summarize recent findings of the photophysical properties of Pdots
the surface functionalization and biomolecular conjugation of Pdots and their applications in cellular labeling
in vivo
imaging
biosensing
single-particle tracking
drug delivery and photodynamic therapy.
Pepperkok R, Ellenberg J. High-throughput fluorescence microscopy for systems biology [J]. Nat. Rev. Mol. Cell Biol., 2006, 7(9):690-696.
Mason W T. Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide to Technology for Quantitative Real-time Analysis [M]. 2nd ed. London: Academic Press, 1999.
Yildiz A, Forkey J N, Selvin P R, et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization [J]. Science, 2003, 300(5628):2061-2065.
Xie X S, Yu J, Yang W Y. Living cells as test tubes [J]. Science, 2006, 312(5771):228-230.
Moerner W. New directions in single-molecule imaging and analysis[J]. Proc. Natl. Acad. Sci., 2007, 104(31):12596-12602.
Betzig E, Patterson G H, Hess H F, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. Science, 2006, 313(5793):1642-1645.
Hell S W. Far-field optical nanoscopy [J]. Science, 2007, 316(5828):1153-1158.
Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385):2016-2018.
Tuncel D, Demir H V. Conjugated polymer nanoparticles [J]. Nanoscale, 2010, 2(4):484-494.
He Y, Zhong Y L, Peng F, et al. One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots [J]. J. Am. Chem. Soc., 2011, 133(36):14192-14195.
Sun Y P, Zhou B, Wang H F, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006, 128(24):7756-7757.
Baker S N, Baker G A. Luminescent carbon nanodots: Emergent nanolights [J]. Angew. Chem. Int. Ed., 2010, 49(38):6726-6744.
Ow H, Larson D R, Wiesner U, et al. Bright and stable core-shell fluorescent silica nanoparticles [J]. Nano Lett., 2005, 5(1):113-117.
Bruchez M, Moronne M, Alivisatos A P, et al.Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385):2013-2016.
Michalet X, Pinaud F F, Weiss S, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307(5709):538-544.
Burroughes J H, Jones C A, Friend R H. New semiconductor device physics in polymer diodes and transistors [J]. Nature, 1988, 335(6186):137-141.
Piok T, Gamerith S, Scherf U, et al. Organic light-emitting devices fabricated from semiconducting nanospheres [J]. Adv. Mater., 2003, 15(10):800-804.
Pu K Y, Liu B. Fluorescent conjugated polyelectrolytes for bioimaging [J]. Adv. Funct. Mater., 2011, 21(18):3408-3423.
Pecher J, Mecking S. Nanoparticles of conjugated polymers [J]. Chem. Rev., 2010, 110(10):6260-6279.
Kaeser A, Schenning A P H J. Fluorescent nanoparticles based on self-assembled -conjugated systems [J]. Adv. Mater., 2010, 22(28):2985-2997.
Cordovilla C, Swager T M. Strain release in organic photonic nanoparticles for protease sensing [J]. J. Am. Chem. Soc., 2012, 134(16):6932-6935.
Harbron E J, Davis C M, Economou N J, et al. Photochromic dye-doped conjugated polymer nanoparticles: Photomodulated emission and nanoenvironmental characterization [J]. J. Phys. Chem. C, 2009, 113(31):13707-13714.
Rahim N A A, McDaniel W, Moon J H, et al. Conjugated polymer nanoparticles for two-photon imaging of endothelial cells in a tissue model [J]. Adv. Mater., 2009, 21(34):3492-3496.
Park S J, Kang S G, Park S J, et al. Highly tunable photoluminescent properties of amphiphilic conjugated block copolymers [J]. J. Am. Chem. Soc., 2010, 132(29):9931-9933.
Abbel R, Van der Weegen R, Meijer E W, et al. Multicolour self-assembled particles of fluorene-based bolaamphiphiles[J]. Chem. Commun., 2009, 13:1697-1699.
Wu C F, Chiu D T. Highly fluorescent semiconducting polymer dots for biology and medicine [J]. Angew. Chem. Int. Ed., 2013, 52(11):3086-3109.
Szymanski C, Wu C F, McNeill J, et al. Single molecule nanoparticles of the conjugated polymer MEH-PPV, preparation and characterization by near-field scanning optical microscopy[J]. J. Phys. Chem. B, 2005, 109(18):8543-8546.
Tian Z Y, Yu J B, McNeill J, et al. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors [J]. Nanoscale, 2010, 2(10):1999-2011.
Wu C F, Peng H S, McNeill J, et al. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles [J]. J. Phys. Chem. B, 2006, 110(29):14148-14154.
Wu C F, Zheng Y L, McNeill J, et al. Energy transfer in a nanoscale multichromophoric system: Fluorescent dye-doped conjugated polymer nanoparticles [J]. J. Phys. Chem. C, 2008, 112(6):1772-1781.
Jin Y H, Ye F M, Chiu D T, et al. Near-infrared fluorescent dye-doped semiconducting polymer dots [J]. ACS Nano, 2011, 5(2):1468-1475.
Chan Y H, Wu C F, Chiu D T, et al.Development of ultrabright semiconducting polymer dots for ratiometric pH sensing[J]. Anal. Chem., 2011, 83(4):1448-1455.
Ye F M, Wu C F, Chiu D T, et al. A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging [J]. Chem. Commun., 2012, 48(12):1778-1780.
Hide F, Diaz-Garcia M A, Heeger A J, et al. New developments in the photonic applications of conjugated polymers [J]. Acc. Chem. Res., 1997, 30(10):430-436.
Baier M C, Huber J, Mecking S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion [J]. J. Am. Chem. Soc., 2009, 131(40):14267-14273.
Pecher J, Huber J, Mecking S, et al. Tailor-made conjugated polymer nanoparticles for multicolor and multiphoton cell imaging [J]. Biomacromol., 2010, 11(10):2776-2780.
Hittinger E, Kokil A, Weder C. Synthesis and characterization of cross-linked conjugated polymer milli-, micro-, and nanoparticles [J]. Angew. Chem. Int. Ed., 2004, 43(14):1808-1811.
Landfester K, Montenegro R, Kietzke T, et al. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process[J]. Adv. Mater., 2002, 14(9):651-655.
Kietzke T, Neher D, Scherf U, et al. Novel approaches to polymer blends based on polymer nanoparticles [J]. Nat. Mater., 2003, 2(6):408-412.
Kurokawa N, Yoshikawa H, Masuhara H, et al. Size-dependent spectroscopic properties and thermochromic behavior in poly (substituted thiophene) nanoparticles [J]. ChemPhysChem, 2004, 5(10):1609-1615.
Howes P, Green M, Hughes M, et al. Phospholipid encapsulated semiconducting polymer nanoparticles: Their use in cell imaging and protein attachment [J]. J. Am. Chem. Soc., 2010, 132(11):3989-3996.
Li K, Pan J, Liu B, et al. Generic strategy of preparing fluorescent conjugated-polymer-loaded poly (DL-lactide-co-glycolide) nanoparticles for targeted cell imaging [J]. Adv. Funct. Mater., 2009, 19(22):3535-3542.
Wu C F, Szymanski C, McNeill J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles [J]. Langmuir, 2006, 22(7):2956-2960.
Wu C F, Jin Y H, Chiu D T, et al. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry [J]. Angew. Chem. Int. Ed., 2010, 49(49):9436-9440.
Wu C F, Schneider T, Chiu D T, et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting [J]. J. Am. Chem. Soc., 2010, 132(43):15410-15417.
Zhang X J, Yu J B, Chiu D T, et al. Importance of having low-density functional groups for generating high-performance semiconducting polymer dots [J]. ACS Nano, 2012, 6(6):5429-5439.
Yu J B, Wu C F, Chiu D T, et al. Stable functionalization of small semiconducting polymer dots via covalent cross-linking and their application for specific cellular imaging [J]. Adv. Mater., 2012, 24(26):3498-3504.
Li Q, Zhang J N, Wu C F, et al. Europium-complex-grafted polymer dots for amplified quenching and cellular imaging applications [J]. Langmuir, 2014, 30(28):8607-8614.
Liu W H, Howarth M, Bawendi M G, et al. Compact biocompatible quantum dots functionalized for cellular imaging [J]. J. Am. Chem. Soc., 2008, 130(4):1274-1284.
Howarth M, Liu W H, Ting A Y, et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells [J]. Nat. Methods, 2008, 5(5):397-399.
Chandler D. Interfaces and the driving force of hydrophobic assembly [J]. Nature, 2005, 437(7059):640-647.
Ten Wolde P R, Chandler D. Drying-induced hydrophobic polymer collapse [J]. Proc. Natl. Acad. Sci. USA, 2002, 99(10):6539-6543.
Sun K, Chen H B, Wu C F, et al. Size-dependent property and cell labeling of semiconducting polymer dots [J]. ACS Appl. Mater. Interf., 2014, 6(13):10802-10812.
Wu C F, Bull B, McNeill J, et al. Multicolor conjugated polymer dots for biological fluorescence imaging [J]. ACS Nano, 2008, 2(11):2415-2423.
Nguyen T Q, Martini I B, Liu J, et al. Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films [J]. J. Phys. Chem. B, 2000, 104(2):237-255.
Dahan M, Laurence T, Weiss S, et al. Time-gated biological imaging by use of colloidal quantum dots [J]. Opt. Lett., 2001, 26(11):825-827.
Eggeling C, Widengren J, Seidel C A M, et al. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis [J]. Anal. Chem., 1998, 70(13):2651-2659.
Wu C F, Szymanski C, McNeill J, et al. Conjugated polymer dots for multiphoton fluorescence imaging [J]. J. Am. Chem. Soc., 2007, 129(43):12904-12905.
Grey J K, Kim D Y, Barbara P F, et al. Size-dependent spectroscopic properties of conjugated polymer nanoparticles [J]. J. Phys. Chem. B, 2006, 110(51):25568-25572.
Van Sark W G J H M, Frederix P L T M, Meijerink A, et al. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy [J]. J. Phys. Chem. B, 2001, 105(35):8281-8284.
Jin Y H, Ye F M, Chiu D T, et al. Generation of functionalized and robust semiconducting polymer dots with polyelectrolytes [J]. Chem. Commun., 2012, 48(26):3161-3163.
Fernando L P, Kandel P K, Christensen K A, et al.Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles [J]. Biomacromol., 2010, 11(10):2675-2682.
Kim S, Na J, Kwon I C, et al. Conjugated polymer nanoparticles for biomedical in vivo imaging [J]. Chem. Commun., 2010, 46(10):1617-1619.
Veiseh O, Sun C, Fang Chen, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier [J]. Cancer Res., 2009, 69(15):6200-6207.
Wu C F, Hansen S J, Chiu D T, et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting [J]. Angew. Chem. Int. Ed., 2011, 50(15):3430-3434.
Choi H S, Liu W H, Frangioni J V, et al. Renal clearance of quantum dots [J]. Nat. Biotechnol., 2007, 25(10):1165-1170.
Wu C F, Bull B, McNeill J, et al. Ratiometric single-nanoparticle oxygen sensors for biological imaging [J]. Angew. Chem. Int. Ed., 2009, 48(15):2741-2745.
Li Q, Sun K, Wu C F, et al. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots [J]. Anal. Chem., 2013, 85(19):9087-9091.
Yu J B, Wu C F, McNeill J, et al. Nanoscale 3D tracking with conjugated polymer nanoparticles [J]. J. Am. Chem. Soc., 2009, 131(51):18410-18414.
Yu J B, Wu C F, McNeill J, et al. Tracking of single charge carriers in a conjugated polymer nanoparticle [J]. Nano Lett., 2012, 12(3):1300-1306.
Sinha R, Kim G J, Shin D M, et al. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery [J]. Mol. Cancer Ther., 2006, 5(8):1909-1917.
Nie S M, Xing Y, Simons J W, et al. Nanotechnology applications in cancer [J]. Annu. Rev. Biomed. Eng., 2007, 9:257-288.
Feng X L, Lv F T, Wang S, et al. Conjugated polymer nanoparticles for drug delivery and imaging [J]. ACS Appl. Mater. Interf., 2010, 2(8):2429-2435.
Agostinis P, Berg K, Kessel D, et al. Photodynamic therapy of cancer: An update [J]. CA-Cancer J. Clin., 2011, 61(4):250-281.
Xing C F, Wang S, Bazan G C, et al. Design guidelines for conjugated polymers with light-activated anticancer activity [J]. Adv. Funct. Mater., 2011, 21(21):4058-4067.
0
Views
240
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution