浏览全部资源
扫码关注微信
1. 国家电光源质量监督检验中心(北京) 北京,100022
2. 北京交通大学光电子技术研究所 教育部发光与光信息技术重点实验室 北京,100044
Received:17 March 2015,
Revised:18 April 2015,
Published:03 June 2015
移动端阅览
杨柳, 何志群, 董飞等. 混合型间隔层对荧磷混合式白色有机电致发光器件性能的影响[J]. 发光学报, 2015,36(6): 685-691
YANG Liu, HE Zhi-qun, DONG Fei etc. Improved Performance of Hybrid White Organic Light-emitting Diodes <em>via</em> Adjusting The Mixing Ratio in Spacer Layer[J]. Chinese Journal of Luminescence, 2015,36(6): 685-691
杨柳, 何志群, 董飞等. 混合型间隔层对荧磷混合式白色有机电致发光器件性能的影响[J]. 发光学报, 2015,36(6): 685-691 DOI: 10.3788/fgxb20153606.0685.
YANG Liu, HE Zhi-qun, DONG Fei etc. Improved Performance of Hybrid White Organic Light-emitting Diodes <em>via</em> Adjusting The Mixing Ratio in Spacer Layer[J]. Chinese Journal of Luminescence, 2015,36(6): 685-691 DOI: 10.3788/fgxb20153606.0685.
制备了基于新型蓝绿色荧光MQAB与红色磷光Ir(MDQ)
2
acac的荧磷混合式白色有机电致发光器件
并探讨了TPBI或UGH3两种间隔层及二者的混合间隔层的器件的发光性能。研究发现
采用TPBI和UGH3的混合间隔层可以调控载流子注入与传输的平衡。当
m
(TPBI):
m
(UGH3)= 1:1时
可有效地控制发光区域
使得器件性能得到优化
并获得发光亮度高达14 700 cd/m
2
的白色有机电致发光器件
最高电流效率可达11.60 cd/A
且器件具有较高的色稳定性。采用混合间隔层的器件比单用TPBI或UGH3作为间隔层的器件效率提高了200%~300%。
Novel hybrid white organic light-emitting diodes (HWOLEDs) based on blue-green fluorescent MQAB and red phosphorescent Ir(MDQ)
2
acac materials were fabricated. 1
3
5-tris(1-phenyl-1H-benzimidazol-2-yl)-benzene (TPBI)
1
3-bis(triphenylsilyl)benzene (UGH3) or a mixture of the two at different ratios was used as a spacer layer. It is found that the mixed spacer of TPBI and UGH3 is able to tune the hole injection/transport effectively. The optimized HWOLEDs with a spacer of
m
(TPBI):
m
(UGH3)=1:1 exhibits a luminance of 14 700 cd/m
2
and a current efficiency of 11.60 cd/A with an excellent color stability. In comparison with the devices using spacer of pure TPBI or pure UGH
3
layer
the current efficiency from the device using mixed spacer enhanced 200%-300%.
MeyerJ, Hamwi S, Blow T, et al. Highly efficient simplified organic light emitting diodes [J]. Appl. Phys. Lett., 2007, 91(11):113506-1-3.
Zhu Y G, Liang C J, Liu S, et al. Effect of interlayer on phosphorescent white organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2014, 35(7):824-829 (in Chinese).
Leo K, Reineke S, Lindner F, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459:234-238.
Liu C B, Zhao J, Su B, et al. Research progress of Re (Ⅰ) complexes in OLEDs [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2012, 27(6):742-751 (in Chinese).
Meng T F, He Z Q, Liu S, et al. Towards color stable three-band white organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2012, 33(10):1095-1100 (in Chinese).
Zhu J Z, Li W L. Double host high efficiency white organic light emitting diodes with high color render index [J]. Chin. J. Lumin.(发光学报), 2012, 33(3):229-303 (in Chinese).
Kondakov D Y, Pawlik T D, Hatwar T K, et al. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic lighting-emitting diodes [J]. J. Appl. Phys., 2009, 106(12):124510-1-8.
Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151-154.
Chen P, Xie W, Li J, et al. White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers [J]. Appl. Phys. Lett., 2007, 91(2):023505-1-3.
Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440:908-912.
Seo J H, Park J S, Lee S J, et al. Codoped spacer ratio effect of hybrid white organic light-emitting diodes [J]. Curr. Appl. Phys., 2011, 11:564-567.
Gao C H, Shi X B, Zhou D Y, et al, Highly efficient white organic light-emitting diodes with controllable excitons behavior by a mixed interlayer between fluorescence blue and phosphorescence yellow-emitting layers [J]. Int. J. Photoenergy, 2013, 2013:831765-1-7.
Marina E K, Joseph C D, Denis Y K, et al. Highly efficient fluorescent-phosphorescent triplet-harvesting hybrid organic light-emitting diodes [J]. J. Appl. Phys., 2010, 107(1):014515-1-3.
Kuwabar Y, Ogawa H, Inada H, et al. Thermally stable multilared organic electroluminescent devices using novel starburst molecules,4,4',4"-tri(N-carbazolyl) triphenylamine(TCTA) and 4,4',4"-tris(3-methylphenylphenylamino) triphenylamine(m-MTDATA), as hole-transport materials [J]. Adv. Mater., 1998, 6:677-681.
Ren X, Li J, Holmes R J, et al. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices [J]. Chem. Mater., 2004, 16:4743-4747.
Lian J R, Niu F F, Liu Y W, et al. Improved hole-blocking and electron injection using a TPBI interlayer at the cathode interface of OLEDs [J]. Chin. Phys. Lett., 2011, 28(4):047803-1-3.
Hao Y Y, Lei J F, Fang X H, et al. Theoretical studies on geometrical and electronic structure of electroplex at the NPB/PBD interface in organic lighting-emitting diodes [J]. Curr. Appl. Phys., 2010, 10(3):744-748.
Song D D, Zhao S L, Luo Y C, et al. Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching [J]. Appl. Phys. Lett., 2010, 97(24):243304-1-3.
0
Views
77
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution