浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
3. 中国科学院大学 北京,100049
Received:23 March 2015,
Revised:06 April 2015,
Published:03 June 2015
移动端阅览
贾鹏, 秦莉, 张星等. 大功率VCSEL三角列阵的空间相干性[J]. 发光学报, 2015,36(6): 673-678
JIA Peng, QIN Li, ZHANG Xing etc. Spatial Coherence of High Power VCSEL Triangular-array[J]. Chinese Journal of Luminescence, 2015,36(6): 673-678
贾鹏, 秦莉, 张星等. 大功率VCSEL三角列阵的空间相干性[J]. 发光学报, 2015,36(6): 673-678 DOI: 10.3788/fgxb20153606.0673.
JIA Peng, QIN Li, ZHANG Xing etc. Spatial Coherence of High Power VCSEL Triangular-array[J]. Chinese Journal of Luminescence, 2015,36(6): 673-678 DOI: 10.3788/fgxb20153606.0673.
由厄米-高斯光束理论和空间相干性定理出发
研究了大功率垂直腔面发射激光器(VCSEL)三角形列阵器件的光束质量和空间相干特性。采用二阶距法和空间相干度积分法得到980 nm波段VCSEL三角列阵器件的远场发散角和空间相干度
并讨论了列阵器件单元间距对其远场特性和空间相干特性的影响。实验结果表明:当三角列阵单元孔径为150 m时
随着列阵单元间距由200 m增大到300 m
列阵器件的远场发散角由9.5增加到12.5
而其空间相干度由0.719减小到0.526。在相同注入电流条件下
3种列阵器件的出光功率基本相同。
The spatial coherence properties of high power vertical cavity surface emitting lasers (VCSELs) triangle-arrays were studied based on the theorem of Hermitian-Gaussian beams and spatial coherence. The far-field divergence angle and spatial coherence degree were gauged using the second-moment method and spatial coherence degree integral average value method for the devices of 980 nm wavelength VCSEL arrays. The influence of array-units distance on far-field characteristics and coherent characteristics was also discussed. With the increasing of array element spacing from 200 m to 300 m
the far-field divergence angle of VCSEL arrays device increases from 9.5 to 12.5
and the spatial coherence degree decreases from 0.719 to 0.526
while the unit aperture of triangle array is 150 m. Under the same injection current condition
the optical powers of three VCSEL array devices are almost equal.
Ning Y Q, Zhang X, Qin L, et al. High-power high beam quality vertical-cavity surface-emitting lasers [J]. Infrared Laser Eng.(红外与激光工程), 2012, 41(12):3219-3225 (in Chinese).
Liu D, Ning Y Q, Zhang J L, et al. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array [J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(10):829-834 (in Chinese).
Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays [J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(1):17-23 (in Chinese) .
Zhang J W, Ning Y Q, Zhang X, et al. Gain-cavity mode detuning vertical cavity surface emitting laser operating at the high temperature [J]. Chin. J. Lasers (中国激光), 2013, 40(5):0502001-1-8 (in Chinese).
Mao M, Xu C, Kan Q, et al. High beam quality of in-phase coherent coupling 2-D VCSEL arrays based on proton-implantation [J]. Photon. Technol. Lett., 2014, 26(4):395-397.
Zhang J S, Ning Y Q, Zhang J L, et al. Optimization of electric field intensity distribution on high power semiconductor laser facet film [J]. Chin. J. Lasers (中国激光), 2014, 41(1):0107001-1-6 (in Chinese).
Lundeberg L D A, Lousberg G P, Boiko D L, et al. Spatial coherence measurements in arrays of coupled vertical cavity surface emitting lasers [J]. Appl. Phys. Lett., 2007, 90(2):021103-1-3.
Gao Z, Ragunathan G, Thompson B, et al. Coherently coupled bottom-emitting vertical cavity laser arrays[C]//CLEO: Science and Innovations, San Jose: Optical Society of America, 2014: SF1G. 4.
Lehman A C, Raftery J J, Carney P S, et al. Coherence of photonic crystal vertical-cavity surface-emitting laser arrays [J]. IEEE J. Quant. Electron., 2007, 43(1):25-30.
Liu S M, Xu J J, Guo R. Coherent Optics [M]. Tianjin: Nankai University Press, 2011:1-17 (in Chinese).
Cui J, Ning Y, Zhang Y, et al. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution [J]. Appl. Opt., 2009, 48(18):3317-3321.
Kawata S, Hikima I, Ichihara Y, et al. Spatial coherence of KrF excimer lasers [J]. Appl. Opt., 1992, 31(3):387-396.
Jia P, Qin L, Cui J J, et al. Research on the spatial coherence characteristics of high power VCSEL [J]. Chin. J. Lasers (中国激光), 2014, 41(12):12020071-1-6 (in Chinese).
ISO 11146. Lasers and laser-related equipmentTest methods for laser beam widths, divergence angles and beam propagation ratios [S]. Switzerland, 2005.
0
Views
181
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution