ZHANG Hui, CHEN Gui-feng, MO Zhao-jun etc. Microstructure and Photoluminescence Characteristics of Solution Controlled ZnO Crystals[J]. Chinese Journal of Luminescence, 2015,36(6): 628-633
ZHANG Hui, CHEN Gui-feng, MO Zhao-jun etc. Microstructure and Photoluminescence Characteristics of Solution Controlled ZnO Crystals[J]. Chinese Journal of Luminescence, 2015,36(6): 628-633 DOI: 10.3788/fgxb20153606.0628.
Microstructure and Photoluminescence Characteristics of Solution Controlled ZnO Crystals
Micro/nano-sized ZnO crystals with different shapes were fabricated by a simple hydro/solvothermal method using zinc acetate and methenamine as precursors. The morphology and size of ZnO crystals are strongly dependent on synthetic conditions. The growth of the polar plane can be suppressed due to the ethylenediaminetetraacetic acid disodium salt and citric acid compound selective adsorbing on the polar plane facets by the chemical adsorption. The selective adsorption makes the shape of ZnO crystal be tunable. Raman spectra confirm that grain size is smaller as ZnO synthesized in citric acid solution. The photoluminescence shows the transitions of exciton and defects in ZnO.
关键词
Keywords
references
Lee M K, Tu H F. Optical emissions of Zn and ZnO in Zn-ZnO structure synthesized by electrodeposition with aqueous solution of zinc nitrate-6-hydrate [J]. Cryst. Growth Design, 2008, 8(6):1785-1788.
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292:1897-1899.
Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Adv. Mater., 2004, 16(1):87-90.
Wang X, Zhou J, Song J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire [J]. Nano Lett., 2006, 6(12):2768-2772.
Hong W K, Sohn J I, Hwang D K, et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors [J]. Nano Lett., 2008, 8(3):950-956.
Belaidi A, Dittrich T, Kieven D, et al. ZnO-nanorod arrays for solar cells with extremely thin sulfidic absorber [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6):1033-1036.
He J H, Lin Y H, McConney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization [J]. J. Appl. Phys., 2007, 102(8):084303-1-5.
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312:242-246.
Park J Y, Oh C W, Choi S W, et al. The effects of growth temperature on the field-emission properties of ZnO nanoneedle arrays [J]. J. Am. Ceram. Soc., 2009, 92(12):2982-2986.
Sun Y, Fuge G M, Ashfold M N R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods [J]. Chem. Phys. Lett., 2004, 396(1):21-26.
Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Adv. Mater., 2001, 13(2):113-116.
Chiang K C, Wu W Y, Ting J M. Enhanced lateral growth of zinc oxide nanowires on sensor chips [J]. J. Am. Ceram. Soc., 2011, 94(3):713-716.
Rani S, Suri P, Shishodia P K, et al. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(12):1639-1645.
Yang J, Liu G, Lu J, et al. Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate [J]. Appl. Phys. Lett., 2007, 90(10):3109-3111.
Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Adv. Mater., 2003, 15(5):464-466.
Tak Y, Yong K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method [J]. J. Phys. Chem. B, 2005, 109(41):19263-19269.
Tian Z R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures [J]. Nat. Mater., 2003, 2(12):821-826.
Poul L, Jouini N, Fivet F. Layered hydroxide metal acetates (metal=zinc, cobalt, and nickel): Elaboration via hydrolysis in polyol medium and comparative study [J]. Chem. Mater., 2000, 12(10):3123-3132.
Biswick T, Jones W, Pacua A, et al. Evidence for the formation of anhydrous zinc acetate and acetic anhydride during the thermal degradation of zinc hydroxy acetate, Zn5(OH)8(CH3CO2)24H2O to ZnO [J]. Solid State Sci., 2009, 11(2):330-335.
Kittilstved K R, Schwartz D A, Tuan A C, et al. Direct kinetic correlation of carriers and ferromagnetism in Co2+:ZnO [J]. Phys. Rev. Lett., 2006, 97(3):037203-1-4.